AW139

QUICK REFERENCE HANDBOOK

ISSUE 1 : 15 09 2006
Rev. 21 : 09 08 2010

Source Document :
RFM Document No. 139G0290X002
ISSUE 1 : 22-08-2006 - Rev. See Record of Revisions

AW139 and AB139 are two names of the same product.
They identify two batches of aircraft manufactured in conformity with a unique Type Certificate Data Sheet
Where not specifically declared, the content of this document is applicable to both AW139 and AB139 helicopters.

Continuing airworthiness criteria for the AW139 is developed and maintained by Agusta, who is the holder of the type certificate in the state of design.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRH General Information</td>
<td>iv</td>
</tr>
<tr>
<td>Record of Revision</td>
<td>A-1</td>
</tr>
<tr>
<td>Record of Effective Pages</td>
<td>B-1</td>
</tr>
<tr>
<td>Limitations</td>
<td>Lim-Norm-Perf 1 to 24b</td>
</tr>
<tr>
<td>GW Ext 6800 kg (if applicable)</td>
<td>Lim-Norm-Perf GW1 to GW12</td>
</tr>
<tr>
<td>Alt Ext 19000 ft (if applicable)</td>
<td>Lim-Norm-Perf ALT1 to ALT6</td>
</tr>
<tr>
<td>Normal Procedures</td>
<td>Lim-Norm-Perf 25 to 62</td>
</tr>
<tr>
<td>Performance Data</td>
<td>Lim-Norm-Perf 63 to 72</td>
</tr>
<tr>
<td>Emergency and Malfunction Procedures</td>
<td>Emerg-Malfunc 1 to 100</td>
</tr>
</tbody>
</table>
QRH GENERAL INFORMATION

CONTENT. The QRH consists of 4 sections which have been grouped into two parts. The first part combines Limitations, Normal Procedures and Performance Data. The second part contains Emergency/Malfunction Procedures. The two parts are mounted back-to-back to allow quick access to either.

The various sections/systems are colour tabbed for ease and quickness of locating the page required.

A Index of Content is included at the start of each of the two parts.

FLIGHT MANUAL. The QRH does not replace the RFM, however, all information contained in the QRH is based on the RFM. To operate the aircraft safely and efficiently, the RFM must be read and thoroughly understood.

If any conflict should exist between this QRH and the Approved RFM the RFM shall take precedence.

QRH Limitations: The limitations have been copied from the RFM, however any limitations that are covered by colour markings on the PFD/MFD (e.g engine limits, rotor limits) have not been included.

QRH Normal Procedures: The normal procedures have been copied from the RFM, CAT A and CAT B procedures have been included.

QRH Performance: The performance data includes only the Power Assurance Charts and, in tabulated data format, Hover Ceiling, Rate Of Climb and Fuel Consumption.

QRH Emergency and Malfunction Procedure: The procedures have been copied from the RFM and grouped into systems. The systems are then highlighted with RED tabs for Emergency Procedures, AMBER tabs for Malfunction Procedures, which have been placed in alphabetical order.

Additionally a table of Warning and Caution messages and the appropriate page number for the procedure is included at the start of each section (Emergency/Malfunction) to aid in rapid location of the correct page.

Optional Equipment: The QRH includes Limitations, Procedures and Emergency Malfunction Procedures on a small number of Optional Equipment Supplements that may be applicable to the aircraft. The RFM must be consulted for comprehensive information and applicability of the Limitations, Normal Procedures etc. for the Optional Equipment Supplements that are included on the aircraft.
Record of Revisions

<table>
<thead>
<tr>
<th>REVISION No.</th>
<th>Date</th>
<th>Basis of Revision</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue 1</td>
<td>15-09-2006</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 1</td>
<td>14-12-2006</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 1</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>11-05-2007</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 2</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>18-06-2007</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 3</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 4</td>
<td>30-07-2007</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 4</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 5</td>
<td>19-10-2007</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 5</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 6 and 7</td>
<td>06-12-2007</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 6 and 7</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 8</td>
<td>01-02-2008</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 8</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 9</td>
<td>28-02-2008</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 9</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 10</td>
<td>06-08-2008</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 10</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 11, 12</td>
<td>18-12-2008</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td>and 13</td>
<td></td>
<td>Rev. 11, 12 and 13</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 14 and 15</td>
<td>15-05-2009</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 14 and 15</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 16 and 17</td>
<td>28-09-2009</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 16 and 17</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 18 and 19</td>
<td>19-02-2010</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 18 and 19</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 20</td>
<td>04-06-2010</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 20</td>
<td>-</td>
</tr>
<tr>
<td>Rev. 21</td>
<td>09-08-2010</td>
<td>AW139-RFM-4D Issue 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev. 21</td>
<td>-</td>
</tr>
</tbody>
</table>

Note

For revisions of the RFM which do not affect the QRH no revision of the QRH is carried out.
<table>
<thead>
<tr>
<th>PAGE</th>
<th>REVISION N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>21</td>
</tr>
<tr>
<td>ii</td>
<td>20</td>
</tr>
<tr>
<td>iii and iv</td>
<td>19</td>
</tr>
<tr>
<td>A-1</td>
<td>21</td>
</tr>
<tr>
<td>A-2</td>
<td>0</td>
</tr>
<tr>
<td>B-1 thru B-3</td>
<td>21</td>
</tr>
<tr>
<td>B-4</td>
<td>20</td>
</tr>
</tbody>
</table>

LIMITATIONS, NORMAL PROCEDURES AND PERFORMANCE DATA

<table>
<thead>
<tr>
<th>PAGE</th>
<th>REVISION N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4 thru 6</td>
<td>19</td>
</tr>
<tr>
<td>7 and 8</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10 blank</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>12 and 13</td>
<td>16</td>
</tr>
<tr>
<td>14 blank</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>18 and 19</td>
<td>0</td>
</tr>
<tr>
<td>19a and 19b</td>
<td>16</td>
</tr>
<tr>
<td>20 blank</td>
<td>0</td>
</tr>
<tr>
<td>20a</td>
<td>21</td>
</tr>
<tr>
<td>20b</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>23 and 24</td>
<td>21</td>
</tr>
<tr>
<td>24a</td>
<td>21</td>
</tr>
<tr>
<td>24b</td>
<td>15</td>
</tr>
<tr>
<td>GW1</td>
<td>19</td>
</tr>
<tr>
<td>GW2</td>
<td>20</td>
</tr>
<tr>
<td>GW3 thru GW12</td>
<td>19</td>
</tr>
<tr>
<td>ALT1 thru ALT6</td>
<td>19</td>
</tr>
<tr>
<td>PAGE</td>
<td>REVISION N°</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>63</td>
<td>15</td>
</tr>
<tr>
<td>64 and 65</td>
<td>19</td>
</tr>
<tr>
<td>66</td>
<td>15</td>
</tr>
<tr>
<td>67 and 68</td>
<td>20</td>
</tr>
<tr>
<td>69 and 70</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>20</td>
</tr>
<tr>
<td>72</td>
<td>19</td>
</tr>
</tbody>
</table>

EMERGENCY AND MALFUNCTION PROCEDURES

<table>
<thead>
<tr>
<th>PAGE</th>
<th>REVISION N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4 thru 6</td>
<td>15</td>
</tr>
<tr>
<td>7 and 8</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>18 and 19</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>22 and 23</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>24a thru 24d (*)</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>27 and 28</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>33 and 34</td>
<td>15</td>
</tr>
<tr>
<td>35 and 36</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>REVISION N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 and 38</td>
<td>20</td>
</tr>
<tr>
<td>39 and 40</td>
<td>15</td>
</tr>
<tr>
<td>40a</td>
<td>15</td>
</tr>
<tr>
<td>40b thru 40d</td>
<td>21</td>
</tr>
<tr>
<td>41</td>
<td>15</td>
</tr>
<tr>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>43</td>
<td>20</td>
</tr>
<tr>
<td>44 and 45</td>
<td>15</td>
</tr>
<tr>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>48</td>
<td>21</td>
</tr>
<tr>
<td>49</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>51 and 52</td>
<td>15</td>
</tr>
<tr>
<td>52a</td>
<td>15</td>
</tr>
<tr>
<td>52b blank</td>
<td>15</td>
</tr>
<tr>
<td>53</td>
<td>20</td>
</tr>
<tr>
<td>54</td>
<td>16</td>
</tr>
<tr>
<td>55</td>
<td>21</td>
</tr>
<tr>
<td>56</td>
<td>16</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>58 and 59</td>
<td>16</td>
</tr>
<tr>
<td>60 and 61</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>15</td>
</tr>
<tr>
<td>63 and 64</td>
<td>20</td>
</tr>
<tr>
<td>64a and 64b</td>
<td>20</td>
</tr>
<tr>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>68</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>16</td>
</tr>
<tr>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>71</td>
<td>16</td>
</tr>
<tr>
<td>72 thru 74</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>76</td>
<td>21</td>
</tr>
<tr>
<td>77</td>
<td>15</td>
</tr>
<tr>
<td>78</td>
<td>20</td>
</tr>
<tr>
<td>PAGE</td>
<td>REVISION N°</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>78a</td>
<td>15</td>
</tr>
<tr>
<td>78b blank</td>
<td>15</td>
</tr>
<tr>
<td>79 and 80</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>20</td>
</tr>
<tr>
<td>82</td>
<td>5</td>
</tr>
<tr>
<td>82a and 82b</td>
<td>5</td>
</tr>
<tr>
<td>83</td>
<td>5</td>
</tr>
<tr>
<td>84</td>
<td>3</td>
</tr>
<tr>
<td>85</td>
<td>19</td>
</tr>
<tr>
<td>86</td>
<td>20</td>
</tr>
<tr>
<td>86a</td>
<td>20</td>
</tr>
<tr>
<td>86b and 86c</td>
<td>21</td>
</tr>
<tr>
<td>86d</td>
<td>15</td>
</tr>
<tr>
<td>87</td>
<td>20</td>
</tr>
<tr>
<td>88</td>
<td>16</td>
</tr>
<tr>
<td>89 thru 91</td>
<td>0</td>
</tr>
<tr>
<td>92 blank</td>
<td>0</td>
</tr>
<tr>
<td>93 thru 96</td>
<td>16</td>
</tr>
<tr>
<td>96a</td>
<td>16</td>
</tr>
<tr>
<td>96b</td>
<td>17</td>
</tr>
<tr>
<td>97</td>
<td>16</td>
</tr>
<tr>
<td>98</td>
<td>17</td>
</tr>
<tr>
<td>99 and 100</td>
<td>16</td>
</tr>
</tbody>
</table>

(*) Yellow pages, T.C. only
<table>
<thead>
<tr>
<th>Limits</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>General, Type of Oper, Min Crew, Weight, CG Limitations</td>
<td>GEN WT/CG</td>
</tr>
<tr>
<td>Speed, Altitude, Temp Limitations</td>
<td>SPD ALT TEMP</td>
</tr>
<tr>
<td>H-V, CAT A/B Limitations</td>
<td>H-V CAT A/B</td>
</tr>
<tr>
<td>Engine, Fuel, Lubricants, Hydraulics Limitations</td>
<td>ENG FUEL LUB HYD</td>
</tr>
<tr>
<td>Miscellaneous Limitations (GW Ext, Alt Ext if applicable)</td>
<td>MISC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Procedures</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>General, Flight Planning, External Checks</td>
<td>EXTN CHECKS</td>
</tr>
<tr>
<td>Pre-Start Checks</td>
<td>PRE START</td>
</tr>
<tr>
<td>Aborted Engine Start</td>
<td>ABORT DRY MOT</td>
</tr>
<tr>
<td>Dry Motoring Procedure</td>
<td>ENG START</td>
</tr>
<tr>
<td>Engine Start Procedure</td>
<td>SYS CHECKS</td>
</tr>
<tr>
<td>System Checks</td>
<td>TAXI T-O</td>
</tr>
<tr>
<td>Taxiing, Pre-Take Off</td>
<td>CAT A/B</td>
</tr>
<tr>
<td>Take-Off CAT A/B</td>
<td>IN FLIGHT</td>
</tr>
<tr>
<td>In Flight Procedures</td>
<td>APPR LAND</td>
</tr>
<tr>
<td>Approach, Landing CAT A/B</td>
<td>POST LD</td>
</tr>
<tr>
<td>Post Landing & Shutdown</td>
<td>SHT DN</td>
</tr>
<tr>
<td>Flight Director and Flight Management System Operation</td>
<td>FD/FMS OPER</td>
</tr>
<tr>
<td>Advisory Captions, PDF Messages</td>
<td>CAPTS MSGS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Altitude, Power Assur Flyaway Height Loss</td>
<td>Hd PAV FLYAWAY</td>
</tr>
<tr>
<td>Hover Ceiling, ROC, Fuel Consumption</td>
<td>HVR ROC FL CONS</td>
</tr>
<tr>
<td>TOC, REC of REV斯</td>
<td>TOC, REC of REV斯</td>
</tr>
</tbody>
</table>
USE OF WARNINGS, CAUTIONS AND NOTES

Warnings, Cautions and Notes are used to emphasize important and critical instructions and are used as follows:

WARNING

An operating procedure, practice, etc., which, if not correctly followed, could result in personal injury or loss of life.

CAUTION

An operating procedure, practice, etc., which, if not strictly observed, could result in damage to, or destruction of, equipment.

Note

An operating procedure, condition, etc., which is essential to highlight.

USE OF PROCEDURAL WORDS

The concept of procedural word usage and intended meaning which has been adhered to in preparing this QRH is as follows:

"Shall" or "Must" have been used only when application of a procedure is mandatory.
"Should" has been used only when application of a procedure is recommended.
"May" has been used only when application of a procedure is optional.
"Will" has been used only to indicate future events, not to indicate a mandatory procedure.
"Condition" has been used to determine if the item under examination presents external damage which could jeopardize its safe operation.
"Secure" has been used to determine if the item under examination is correctly locked, referring to doors and disconnectable items, or correctly positioned and installed.
LIMITATIONS

GENERAL ... 7
TYPES OF OPERATION ... 7
MINIMUM FLIGHT CREW ... 7
NUMBER OF OCCUPANTS .. 7
WEIGHT AND CENTER OF GRAVITY LIMITATIONS 7
Airspeed LIMITATIONS ... 11
GROUND SPEED LIMITATIONS 11
WIND SPEED LIMITATIONS FOR ROTOR STARTING & STOPPING .. 12
ALTITUDE LIMITATIONS .. 12
AMBIENT AIR TEMPERATURE LIMITATIONS (OAT) 12
MANOEUVRING LIMITATIONS 12
ICING LIMITATIONS ... 12
AUTOROTATION LIMITATIONS 12
SLOPE LIMITATIONS ... 13
ALTITUDE AND TEMPERATURE LIMITATIONS CHART 13
HEIGHT- VELOCITY LIMITATIONS 15
CAT A MISCELLANEOUS LIMITATIONS 15
HEIGHT - VELOCITY DIAGRAM 16
CATEGORY B OPERATION LIMITATIONS 17
CATEGORY A OPERATION LIMITATIONS 18
ENGINE AND TRANSMISSION DIGITAL LIMITATIONS 20a
ENGINE LIMITATIONS ... 21
ENGINE STARTER DUTY CYCLE 21
POWER MARGIN TREND MONITORING 21
ENGINE TRAINING MODE LIMITATIONS 21
FUEL LIMITATIONS .. 21
FUEL CAPACITIES .. 21
UNUSABLE FUEL .. 21
AUTHORIZED FUEL TYPES 21
LUBRICANT LIMITATIONS .. 22
AUTHORIZED ENGINE OILS 22
AUTHORIZED TRANSMISSION OIL 22
ELECTRICAL HYDRAULIC PUMP 22
AUTHORIZED HYDRAULIC FLUIDS 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISCELLANEOUS LIMITATIONS</td>
<td>23</td>
</tr>
<tr>
<td>DC GENERATOR LOAD</td>
<td>23</td>
</tr>
<tr>
<td>WHEEL BRAKE LIMITATIONS</td>
<td>23</td>
</tr>
<tr>
<td>PITOT HEATING LIMITATIONS</td>
<td>23</td>
</tr>
<tr>
<td>AUTOMATIC FLIGHT CONTROL SYSTEM LIMITATIONS</td>
<td>23</td>
</tr>
<tr>
<td>AVIONIC LIMITATIONS</td>
<td>23</td>
</tr>
<tr>
<td>FLIGHT DIRECTOR LIMITATIONS</td>
<td>24</td>
</tr>
<tr>
<td>FMS AND GPS LIMITATIONS</td>
<td>24b</td>
</tr>
<tr>
<td>TORQUE LIMITER FUNCTION</td>
<td>24b</td>
</tr>
<tr>
<td>ENGINE EEC LIMITATIONS</td>
<td>24b</td>
</tr>
<tr>
<td>SYNOPTIC MFD PAGE LIMITATIONS</td>
<td>24b</td>
</tr>
<tr>
<td>HEADSET/HELMET LIMITATIONS</td>
<td>24b</td>
</tr>
<tr>
<td>INCREASED GROSS WEIGHT 6800 KG (IF APPLICABLE)</td>
<td>GW1</td>
</tr>
<tr>
<td>T-O & LANDING ALTITUDE EXTENSION (IF APPLICABLE)</td>
<td>ALT1</td>
</tr>
<tr>
<td>NORMAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>25</td>
</tr>
<tr>
<td>FLIGHT PLANNING</td>
<td>25</td>
</tr>
<tr>
<td>CAT B WEIGHT AND H-V DETERMINATION</td>
<td>25</td>
</tr>
<tr>
<td>CATEGORY A PROCEDURES</td>
<td>25</td>
</tr>
<tr>
<td>CATEGORY A TAKE OFF</td>
<td>25</td>
</tr>
<tr>
<td>VERTICAL PROCEDURE</td>
<td>25</td>
</tr>
<tr>
<td>SHORT FIELD PROCEDURE</td>
<td>25</td>
</tr>
<tr>
<td>BACK UP PROCEDURE</td>
<td>25</td>
</tr>
<tr>
<td>CLEAR AREA PROCEDURE</td>
<td>25</td>
</tr>
<tr>
<td>CONFINED AREA PROCEDURE</td>
<td>26</td>
</tr>
<tr>
<td>OFFSHORE HELIDECK PROCEDURE</td>
<td>26</td>
</tr>
<tr>
<td>CATEGORY A LANDING</td>
<td>26</td>
</tr>
<tr>
<td>HELIPORT/HELIDECK PROCEDURE</td>
<td>26</td>
</tr>
<tr>
<td>CLEAR AREA PROCEDURE</td>
<td>26a</td>
</tr>
<tr>
<td>CONFINED AREA PROCEDURE</td>
<td>26a</td>
</tr>
<tr>
<td>OFFSHORE HELIDECK PROCEDURE</td>
<td>26a</td>
</tr>
<tr>
<td>GROSS WEIGHT AND CENTER OF GRAVITY</td>
<td>26a</td>
</tr>
<tr>
<td>COLD WEATHER OPERATION</td>
<td>26a</td>
</tr>
<tr>
<td>EXTERNAL PRE-FLIGHT CHECKS</td>
<td>27</td>
</tr>
<tr>
<td>COCKPIT/ENGINE PRE-START CHECKS</td>
<td>31</td>
</tr>
<tr>
<td>ABORTED ENGINE START PROCEDURES</td>
<td>35</td>
</tr>
<tr>
<td>DRY MOTORING PROCEDURE</td>
<td>36</td>
</tr>
<tr>
<td>NORMAL ENGINE START</td>
<td>37</td>
</tr>
<tr>
<td>QUICK ENGINE START</td>
<td>39</td>
</tr>
<tr>
<td>SYSTEM CHECKS</td>
<td>41</td>
</tr>
<tr>
<td>TAXIING</td>
<td>43</td>
</tr>
</tbody>
</table>
PRE TAKE-OFF CHECKS .. 43
TAKE-OFF PROCEDURES .. 44
 TAKE-OFF CATEGORY B PROCEDURE 44
 CATEGORY A TAKE-OFF GENERAL 45
 CATEGORY A TAKE-OFF VERTICAL, SHORT FIELD
 AND BACK UP PROCEDURE ... 45
 CATEGORY A TAKE-OFF CLEAR AREA PROCEDURE 46
 CATEGORY A TAKE-OFF CONFINED AREA PROCEDURE ... 47
 CATEGORY A TAKE-OFF OFFSHORE HELIDECK
 PROCEDURE ... 48a
SLOPING GROUND OPERATION ... 48c
 TAKE OFF PROCEDURE .. 46c
IN-FLIGHT PROCEDURES .. 49
 AFTER TAKE-OFF .. 49
 CLIMB CHECKS .. 49
 CRUISE CHECKS .. 49
APPROACH AND LANDING ... 51
 PRE-LANDING CHECKS .. 51
LANDING .. 52
 CATEGORY B LANDING PROCEDURE 52
 CATEGORY A LANDING GENERAL 52
 CATEGORY A HELIPORT LANDING PROCEDURE 52
 CATEGORY A CLEAR AREA LANDING PROCEDURE 53
 CATEGORY A CONFINED AREA LANDING PROCEDURE 53
 CATEGORY A OFFSHORE HELIDECK LANDING
 PROCEDURE ... 54a
SLOPING GROUND OPERATION ... 54c
 LANDING PROCEDURE .. 54c
POST LANDING AND SHUTDOWN PROCEDURES 55
 POST LANDING CHECKS .. 55
 PRE-SHUTDOWN CHECKS ... 55
 ENGINES AND ROTOR SHUTDOWN 55
 POST SHUTDOWN CHECKS .. 56
FLIGHT DIRECTOR COUPLED AND UNCOUPLED
 OPERATIONS ... 56a
 COLLECTIVE PI LIMITING FUNCTION 56a
 SAFETY FLY-UP FUNCTIONALITY WHEN FD MODES
 ENGAGED ... 56a
 SPECIFIC MODE INFORMATION 56b
FMS OPERATION NORMAL PROCEDURES 57
 GENERAL ... 57
 BASIC OPERATIONS .. 57
 AUTOPILOT COUPLED OPERATIONS WITH FLIGHT
 DIRECTOR (IF FITTED) ... 59
PERFORMANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMS ADVISORY ANNUNCIATORS</td>
<td>59</td>
</tr>
<tr>
<td>ADVISORY CAPTIONS DEFINITIONS</td>
<td>61</td>
</tr>
<tr>
<td>PFD MESSAGES</td>
<td>62</td>
</tr>
<tr>
<td>DENSITY ALTITUDE CHART</td>
<td>63</td>
</tr>
<tr>
<td>PWC\PT6C-67C HOVER POWER CHART 100%NR</td>
<td>64</td>
</tr>
<tr>
<td>PWC\PT6C-67C HOVER POWER CHART 102%NR</td>
<td>65</td>
</tr>
<tr>
<td>HEIGHT LOSS DURING FLYAWAY MONOEUVRE</td>
<td>66</td>
</tr>
<tr>
<td>HOVER CEILING</td>
<td>67</td>
</tr>
<tr>
<td>RATE OF CLIMB AT 6400 kg AEO</td>
<td>69</td>
</tr>
<tr>
<td>RATE OF CLIMB AT 6400 kg OEI</td>
<td>69</td>
</tr>
<tr>
<td>FUEL CONSUMPTION AT 6400kg</td>
<td>70</td>
</tr>
<tr>
<td>HOVER CEILING 6800 kg (if applicable)</td>
<td>71</td>
</tr>
<tr>
<td>RATE OF CLIMB AT 6800 kg AEO (if applicable)</td>
<td>71</td>
</tr>
<tr>
<td>RATE OF CLIMB AT 6800 kg OEI (if applicable)</td>
<td>71</td>
</tr>
<tr>
<td>FUEL CONSUMPTION AT 6800 kg (if applicable)</td>
<td>72</td>
</tr>
</tbody>
</table>
LIMITATIONS

GENERAL
This QRH includes:

• Information from RFM Sections 1, 2, 3 and limited data from Section 4.
• Optional Supplements included: Heater, Rotor Brake, Flight Director, CATEGORY A, Increased Gross Weight 6800 kg and Take Off and Landing Altitude Extension.

TYPES OF OPERATION
In the basic configuration the rotorcraft is approved CAT B and CAT A operations for Day/Night VFR and Day/Night IFR operations.
CAT A Take Off and Landing can be carried out from the right or left hand seat.

MINIMUM FLIGHT CREW
See Basic Flight Manual
When CAT A Take Off or Landing is carried out from left hand seat or the CAT A Offshore Helideck procedure is required, minimum flight crew is 2 pilots

NUMBER OF OCCUPANTS
The total number of occupants, including the crew, shall not exceed:

— low density configuration 14
— high density configuration 17
— Each occupant must have a seat and seat belt.
— The low density or high density configuration may have a reduced number of passenger seats installed in cabin. A minimum of 3 seats, in at least one row, must be installed.
— After seat removal or installation the new empty weight and C of G position must be determined to ensure C of G limits are not exceeded.

WEIGHT AND CENTER OF GRAVITY LIMITATIONS

WEIGHT
Minimum flight/rotor running gross weight 4400 kg
Maximum towing or taxi gross weight 6450 kg
Maximum gross weight for take-off/landing 6400 kg
CAT B WAT Limitations chart .. Figure 1-5
CAT A Heliport Vertical, Short Field and Back Up Procedure
WAT Limitations chart .. Figure 1-6
CAT A Clear Area WAT Limitations chart Figure 1-7
CAT A Confined Area WAT Limitations chart Figure 1-8
CAT A Offshore Helideck WAT Limitations chart Figure 1-9
CENTER OF GRAVITY

Longitudinal limits ... See Figure 1-1
Lateral limits ... See Figure 1-2

Figure 1-1 Weight and Longitudinal CG Envelope
Figure 1-2 Weight and Lateral CG Envelope
This Page Left Blank Intentionally
AIRSPEED LIMITATIONS

Maximum airspeed with Take-Off Power .. 90 KIAS
Maximum airspeed with NR at 102% .. 90 KIAS
Maximum airspeed in sideward or rearward flight Figure 1-5
Maximum allowable tailwind and crosswind Figure 1-5
Maximum airspeed for landing gear V_{LO} or V_{LE} 150 KIAS or V_{ne} if less
Minimum airspeed for flight under IFR (V_{mini}) 50 KIAS
Maximum airspeed for IFR approach ... 150 KIAS
Maximum airspeed for climb with one AP failed 100 KIAS
Maximum rate of climb with one AP failed 1000 fpm
Maximum airspeed with one AP failed 140 KIAS
Maximum airspeed for operation of windscreen wipers 140 KIAS
Minimum airspeed in autorotation ... 40 KIAS

CAT A Take-Off & Balked Landing Safety Speed (V_{TOSS}/V_{BLSS}):
 Vertical, Short Field and Back Up Procedures 40 KIAS
 Clear Area Procedure .. 50 KIAS
Best Rate Of Climb speed (V_Y)....................................... Below 10000ft Hp 80 KIAS
 Above 10000ft Hp 70 KIAS
Maximum airspeed with right cabin door locked open 100 KIAS
Maximum airspeed with left or both cabin doors locked open 80 KIAS
Maximum airspeed for opening/closing cabin doors 80 KIAS

GROUND SPEED LIMITATIONS

ON PAVED SURFACES

Maximum taxi speed .. 40 knots
(above 20 knots nose wheel must be locked fore and aft)
Maximum for emergency landing speed
(nose wheel locked in fore and aft position) 60 knots
Maximum towing speed .. 37 km/hr (23mph)
Maximum GS with PARK BRAKE ON 5 kts

ON GRASS SURFACES

Maximum taxi speed (nose wheel locked fore and aft) 20 knots
(above 10 knots nose wheel must be locked fore and aft)
Maximum speed for emergency landing
(nose wheel locked fore and aft) ... 40 knots
WIND SPEED LIMITATIONS FOR ROTOR STARTING & STOPPING

Maximum wind speed ... 50 knots

Note
Each rotor starting and stopping in wind speeds above 27kts
must be recorded in the helicopter log book.

ALTITUDE LIMITATIONS

Maximum operating altitude .. See Figure 1-3
Minimum operating altitude .. See Figure 1-3
Maximum CAT B Take-Off and Landing altitude............... See Figure 1-3

Maximum altitude for CAT A Heliport Vertical Take-Off Procedure:
TDP 35ft ... 14000ft Hp of Hd
whichever comes first
TDP 36ft to 70ft ... 7000ft Hp of Hd
whichever comes first

Maximum altitude for CAT A Short Field, Back Up and
Clear Area Take-Off Procedures................................. 14000ft Hp of Hd
whichever comes first

Maximum altitude for CAT A Heliport, Short Field or Clear Area
Landing Procedures ... 14000ft Hp or Hd
whichever comes first

Maximum altitude for CAT A Confined Area Take Off
and Landing .. 10000ft Hp or Hd
whichever comes first

Maximum altitude for CAT A Offshore Helideck Take Off
and Landing .. 5000ft Hp or Hd
whichever comes first

AMBIENT AIR TEMPERATURE LIMITATIONS (OAT)

Minimum temperature for ground starting -40°C

Maximum and minimum air temperature limitations........ See Figure 1-3

MANOEUVRING LIMITATIONS

Aerobatic manoeuvres are prohibited.

ICING LIMITATIONS

Flight into known icing conditions or freezing rain is prohibited.

AUTORotation LIMITATIONS

Practice autorotative landings are prohibited.

During autorotation the ENG MODE select switch must not be retarded from
FLIGHT to IDLE except in an emergency.
SLOPE LIMITATIONS

Sloped Take Off and Landing is limited to the following:
- Nose up: 5°
- Nose Down: 5°
- Left Wing Low: 5°
- Right Wing Low: 5°

ALTITUDE AND TEMPERATURE LIMITATIONS CHART

Figure 1-3 Altitude - Temperature Limitations
This Page Left Blank Intentionally
HEIGHT- VELOCITY LIMITATIONS

The Height-Velocity diagram defines, in the event of a single engine failure during take off, landing or other operation near the surface, a combination of airspeed and height above ground from which a safe single engine landing on a smooth, level and hard surface cannot be assured.

Prior to the determination of the H-V envelope the CATEGORY B weight should be defined for the ambient conditions. See Flight Planning in Section 2 for use of the CAT B W.A.T. and H-V envelope charts.

Height Velocity Diagram ...See Figure 1-4

CAT A MISCELLANEOUS LIMITATIONS

Ground and Elevated Heliport / Helideck Size

Minimum demonstrated heliport/helideck size for Vertical, Back Up and Offshore procedures15 m x 15 m (50 ft x 50 ft)

Diameter 15 m (50 ft)

Minimum demonstrated heliport size for Confined Area procedure ..20 m x 20 m (65 ft x 65 ft)
or Diameter 20 m (65 ft)

Wind Limitations

Maximum cross wind component must not exceed 20 kts.

For the Offshore Helideck procedures for cross wind components between 10 kts and 20 kts a headwind component of at least 5 kts is required.

Take Off or Landing with tail wind is prohibited.

Heater Limitations

Heater must be switched off for Take Off and Landing.
Figure 1-4 Height Velocity Limitations
WEIGHT-ALTITUDE-TEMPERATURE
for TAKE-OFF, LANDING and IGE MANOEUVRES
RELATIVE WIND AZIMUTH: 10 to 350 deg

Figure 1-5 CATEGORY B - Weight Limitations

NOTE: no windspeed limitation exists for headwind conditions (wind azimuth ±10 deg)

H-V CAT A/B
Figure 1-6 CATEGORY A Ground and Elevated Heliport/Helideck Vertical, Back Up & Short Field Procedure Weight Limitations

Figure 1-7 CATEGORY A Clear Area Procedure Weight Limitations
Figure 1-8 CATEGORY A Ground and Elevated Heliport Confined Area Procedure Weight Limitations

Gross weight - [lb x 100] vs. Pressure altitude - [m x 1000] vs. Gross Weight - [kg x 100] vs. OAT [°C]

CAT A/B

H-V
Figure 1-9 CATEGORY A Offshore Helideck Procedure Weight Limitations

Operation in this area is permitted only for aircraft configured for 6800 kg (see Sup.50)
ENGINE AND TRANSMISSION DIGITAL LIMITATIONS

The following represent the digital values for PFD and MFD limitations indicated by colours.

<table>
<thead>
<tr>
<th>NR %</th>
<th>90</th>
<th>95</th>
<th>110</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Off</td>
<td>Minimum Transient</td>
<td>Minimum Continuous</td>
<td>Maximum Continuous</td>
<td>Maximum Transient</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITT °C/%</th>
<th>869/118.2</th>
<th>1000/136.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Starting</td>
<td>Maximum Unlimited</td>
<td>Maximum Transient (2 secs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NR %</th>
<th>95</th>
<th>98</th>
<th>101</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>106*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NF %</th>
<th>95</th>
<th>98</th>
<th>101</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>106*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITT °C/%</th>
<th>735/100.0</th>
<th>775/105.4</th>
<th>847/115.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ng %</td>
<td>55.0</td>
<td>100.0</td>
<td>102.4</td>
</tr>
<tr>
<td></td>
<td>107.0</td>
<td>107.0</td>
<td>107.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI & TQ %</th>
<th>100</th>
<th>110</th>
<th>121</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI & TQ %</td>
<td>160</td>
<td>176</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All Engines Operating</th>
<th>Minimum Continuous</th>
<th>Maximum Continuous</th>
<th>Maximum Take Off (5 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Transient</td>
<td>Cautionary</td>
<td>Maximum Transient (5 secs)</td>
<td>One Engine Inoperative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENG FUEL</th>
<th>LUB HYD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 second transient</td>
<td></td>
</tr>
</tbody>
</table>

* 10 second transient
<table>
<thead>
<tr>
<th></th>
<th>EOT °C%</th>
<th>EOP BAR</th>
<th>MGBOT °C</th>
<th>MGBOP BAR</th>
<th>IGBOT °C</th>
<th>TGBOT °C</th>
<th>HYDOT °C</th>
<th>HYDOP BAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum for Starting and GI</td>
<td>-40</td>
<td>+4.2</td>
<td>-40</td>
<td>+2.3</td>
<td>-40</td>
<td>-40</td>
<td>-40</td>
<td>+180</td>
</tr>
<tr>
<td>Minimum Normal Operation</td>
<td>+10</td>
<td>+6.3</td>
<td>+1</td>
<td>+3.1</td>
<td>+1</td>
<td>+1</td>
<td>-20</td>
<td>+225</td>
</tr>
<tr>
<td>Maximum Normal Operation</td>
<td>+140</td>
<td>+8.9</td>
<td>+110</td>
<td>+6.0</td>
<td>+110</td>
<td>+110</td>
<td>+119</td>
<td>+225</td>
</tr>
<tr>
<td>Maximum Cautionary TQ < 60%</td>
<td>+145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Cautionary for eng accel OAT<0°C</td>
<td>+10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Cautionary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+134</td>
<td>+250</td>
</tr>
<tr>
<td>Maximum for Engine Start (5 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+15.2</td>
<td></td>
</tr>
<tr>
<td>Maximum Transient (1 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BATTERY LOAD AMPS</th>
<th>MAIN BUS VOLTAGE</th>
<th>ESS BUS VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Battery Discharge</td>
<td>-200</td>
<td>Minimum Normal Operation</td>
<td>22</td>
</tr>
<tr>
<td>Maximum Battery Charge</td>
<td>+200</td>
<td>Maximum Normal Operation</td>
<td>29</td>
</tr>
</tbody>
</table>
ENGINE LIMITATIONS

ENGINE STARTER DUTY CYCLE
45 seconds on, 1 minute off.
45 seconds on, 1 minute off
45 seconds on, 30 minutes off

POWER MARGIN TREND MONITORING
Every 50 flight hours record engine power assurance check values for engine power margin trend monitoring purposes.

ENGINE TRAINING MODE LIMITATIONS
Selection of Engine Training Mode (OEI TNG) is permitted only for Category A Training in OEI simulated conditions.

CAUTION
Intentional use of actual OEI rating for training is prohibited.

FUEL LIMITATIONS

FUEL CAPACITIES
Total Usable...1588 litres
Unusable ...20 litres

UNUSABLE FUEL
In coordinated (ball centered) flight: ... 0kg (0lb) indicated/
(8 kg(18lb)/10 litres per tank actual)
Hovering in cross winds or sideways flight with sustained roll angles greater than ±15° is prohibited when fuel indication, in either tank, is less than 70kg.
Cross feeding (tank with pump off, not supplying engines)
..Maximum 228 kg/500lb

Note
During XFEED the unusable fuel level indication will change to grey to indicate the tank can no longer supply fuel.

AUTHORIZED FUEL TYPES
The fuels shown in the table below have been authorized for use with the Pratt and Whitney PT6C-67C engines:

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Applicable Specification</th>
<th>Fuel Type</th>
<th>Applicable Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>JET A</td>
<td>ASTM D1655</td>
<td>JP8</td>
<td>AVTUR/FSII</td>
</tr>
<tr>
<td>JET A-1</td>
<td>ASTM D1655</td>
<td>JP8+100</td>
<td>MIL-T-83138D</td>
</tr>
<tr>
<td>JP5</td>
<td>DEF STAN 91-86</td>
<td>GOST 10227RT</td>
<td>NATO Code F-44</td>
</tr>
<tr>
<td></td>
<td>AVMAC/FSII</td>
<td></td>
<td>NATO Code F-34</td>
</tr>
<tr>
<td></td>
<td>MIL-PRF-5624F</td>
<td></td>
<td>GOST 10227-86</td>
</tr>
<tr>
<td></td>
<td>NATO Code F-44</td>
<td></td>
<td>GOST 10227-86 (See RFM restrictions)</td>
</tr>
<tr>
<td>JP8</td>
<td>DEF STAN 91-87-2002</td>
<td></td>
<td>Aeroshell Performance Additive 101</td>
</tr>
</tbody>
</table>

Rev. 19
Lims-Norm-Perf Page 21
LUBRICANT LIMITATIONS

AUTHORIZED ENGINE OILS
The oils shown in the table below have been authorized for use with the Pratt and Whitney PT6C-67C engines. Any brand approved under the applicable specification may be used.

<table>
<thead>
<tr>
<th>Oil Type</th>
<th>Applicable Specification</th>
<th>Brand Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (3cs)</td>
<td>PWC 521</td>
<td>BP Turbo Oil 2389</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobil Avrex S Turbo 256</td>
</tr>
<tr>
<td>Type II (5cs)</td>
<td>PWC 521</td>
<td>Aero-Shell Turbine Oil 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Castrol 5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobil Jet Oil II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Royco Turbine Oil 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP Turbo Oil 2380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turbonycoil 525-2A</td>
</tr>
<tr>
<td>Third Generation</td>
<td>PWC 521</td>
<td>Aero Shell Turbine Oil 560</td>
</tr>
<tr>
<td>(5 cs)</td>
<td></td>
<td>Royco Turbine Oil 560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobil Jet Oil 254</td>
</tr>
</tbody>
</table>

CAUTION
Mixing of any oils, by type, specification or brand name, is prohibited.

AUTHORIZED TRANSMISSION OIL

<table>
<thead>
<tr>
<th>Applicable Specification</th>
<th>Brand Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-PRF23699F</td>
<td>BP Turbo Oil 2380</td>
</tr>
</tbody>
</table>

ELECTRICAL HYDRAULIC PUMP
The electrical hydraulic pump is for ground operation only.

AUTHORIZED HYDRAULIC FLUIDS
The hydraulic fluids shown in the table below have been authorized for use in all hydraulic components. Any brand approved under the applicable specifications may be used.

<table>
<thead>
<tr>
<th>Applicable Specification</th>
<th>Brand Names (For reference only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-PRF-83282</td>
<td>AEROSHELL FLUID 31</td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
</tr>
<tr>
<td>MIL-PRF-5606 (see NOTE below)</td>
<td>AEROSHELL FLUID 41</td>
</tr>
</tbody>
</table>

Note
MIL-PRF-5606 can be used for enhanced performance of hydraulic system in low temperature environments below -30°C.

CAUTION
Mixing of hydraulic liquid, by specification or brand name, is prohibited.
MISCELLANEOUS LIMITATIONS

DC GENERATOR LOAD
Normal Operation Range... 0 to 100%
Cautionary Range (for engine starting only).............................. 101 to 155%
Maximum Cautionary ... 155%
(Maximum cautionary may be exceeded for maximum of 45 seconds for
engine start only)
Max normal operating load up to 15000ft Hp 100% (equivalent 300A)
Max normal operating load above 15000ft Hp.................... reduce by 13.4%
..every 1000ft
(See placard on RFM page 1-62 or, for aircraft fitted with EPIC S/W Phase 5
or later, Supplement 68)
Max normal operating load 20000ft Hp 33%
MPOG with generator load at 75% or less No time limitations
MPOG with generator load greater than 75% Max 20 minutes

WHEEL BRAKE LIMITATIONS
Maximum running speed for brake application.........................40 knots
Parking on slopes up to 10° is permitted for a maximum of 1 hour.

PITOT HEATING LIMITATIONS
Pitot heating must be switched ON for conditions of visible moisture at
indicated OAT of +4° C or less.
Pitot heating must be switched OFF at indicated OAT of +10° C or more.

AUTOMATIC FLIGHT CONTROL SYSTEM LIMITATIONS
Minimum AFCS configuration for VFR flight....................2 AP in SAS mode
Minimum AFCS configuration for IFR flight 2 AP in ATT mode
Intentional ATT MODE de-selection during IFR flight is prohibited.

AVIONIC LIMITATIONS
ILS Mode Limitations
Maximum airspeed for glideslope up to 4 degrees................. 150 KIAS
Maximum airspeed for glideslopes between 4
and 7.5 degrees (Steep Approach) 120 KIAS

CAUTION
During steep approach, take care not to use less than 5% PI
FLIGHT DIRECTOR LIMITATIONS

4 Axis Basic and Enhanced FD system

- Basic FD system only: HOV mode not operative
- SAR Guidance Controller, TD/H, MOT, WTR, modes only operative for Enhanced FD with EPIC Software Phase 5, or later, SAR modes operative.
- VNAV mode inoperative.
- Collective modes must not be engaged if either or both engines are in MANUAL MODE
- The RHT, TD, TDH, TU, MOT, WTR modes can only be engaged over flat surfaces which are clear of obstacles (EPIC Software Phase 5 or later)
- The RHT must not be engaged in cruise over land (EPIC Software Phase 4 only)

FLIGHT DIRECTOR MODES ENGAGEMENT LIMITS AND MINIMUM USE HEIGHT (MUH)

<table>
<thead>
<tr>
<th>Hold Mode</th>
<th>Applicable Range</th>
<th>MUH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS</td>
<td>60 KIAS to Vne less 5 KIAS</td>
<td>150 ft AGL or 50 ft AGL during approach</td>
</tr>
<tr>
<td>HDG/NAV</td>
<td>60 KIAS to Vne</td>
<td>150 ft AGL or 50 ft AGL during approach</td>
</tr>
<tr>
<td>APP/BC/GA</td>
<td>60 KIAS to Vne</td>
<td>50 ft AGL</td>
</tr>
<tr>
<td>VS</td>
<td>60 KIAS to Vne within -1500 fpm and 2000 fpm</td>
<td>150 ft AGL</td>
</tr>
<tr>
<td>ALT</td>
<td>0 KIAS to Vne</td>
<td>300 ft AGL (airspeed greater than 55 KIAS) 50 ft AGL in HOV or airspeed less than 55 KIAS (Enhanced FD system only)</td>
</tr>
<tr>
<td>DCL</td>
<td>60 KIAS to Vne</td>
<td>50 ft AGL</td>
</tr>
<tr>
<td>ALTA</td>
<td>60 KIAS to Vne</td>
<td>150 ft AGL</td>
</tr>
<tr>
<td>RHT</td>
<td>0 to Vne 15 ft to 2000 ft AGL</td>
<td>150 ft AGL (airspeed greater than 55 KIAS) 30 ft AGL in HOV or airspeed less than 55 KIAS</td>
</tr>
<tr>
<td>GA</td>
<td>60 KIAS to Vne 0 to 2000 ft AGL</td>
<td>N/A</td>
</tr>
<tr>
<td>HOV Enhanced FD systems only</td>
<td>Groundspeed — less than 60 kts forward — less than 40 kts lateral or aft with IAS less than 75 KIAS</td>
<td>30 ft AGL</td>
</tr>
<tr>
<td>TU Enhanced FD Phase 5, or later</td>
<td>0 KIAS to 60 KIAS 0 to 2000 ft AGL</td>
<td>150 ft AGL (airspeed greater than 55KIAS) 30 ft AGL in HOV (airspeed less than 55 KIAS)</td>
</tr>
</tbody>
</table>
For operations on the sea the MUH must be increased by one half the maximum reported/observed wave height.

Note*
- Automatic disengagement of these modes below 55 KIAS.
- VS engagement above 2000 fpm or below -1500 fpm will result in the mode returning the aircraft to the maximum rates quoted (2000 fpm or -1500 fpm).

SAR Limitations
Flight below 50 KIAS (Vmini) in IMC is only permitted when coupled to a SAR mode.

FD VOR Limitations
In case of invalid DME/FMS distance, select:
- VOR APP at ranges below 10 nm
- VOR NAV at ranges greater than 10 nm

VGP Limitations
When being radar vectored or autonomously flying to the final approach course, the VECTORS approach transition and/or ACT VECTORS function must be used to program the FMS for the approach and the flight crew must ensure that published altitudes are complied with.

FD ILS APPROACH MODE LIMITATION
The helicopter is certified to carry out CAT 1 ILS approaches up to 7.5 deg glideslope.

Maximum recommended Localizer Intercept angle...45°
..ranges greater
..than 10nm
Maximum recommended Localizer Intercept angle...30°
..ranges less
..than 10nm

In case of invalid DME and FMS distance and with both Rad Alt signals invalid an ILS approach must be initiate at a distance of not less than 10 nm.
FMS AND GPS LIMITATIONS

1. The software status stated in the Honeywell Flight Management System (FMS) Pilot’s Manual for the Agusta AW139 must match that displayed on the equipment MCDU page at power up.

2. IFR en route and terminal navigation is prohibited unless the pilot verifies the currency of the Navigation Data Base (NDB) or verifies each selected waypoint for accuracy by reference to current approved data.

3. Instrument approaches must be carried out in accordance with approved instrument approach procedures that are retrieved from the FMS data base. The FMS data base must incorporate the current update cycle.
 — For instrument approaches GPS integrity monitoring (RAIM) must be available at the Final Approach Fix.

 Note
 The Pilot must not continue an instrument approach inside the Final Approach Fix (FAF), unless the ‘APP’ advisory is displayed on the PFD. If during an instrument approach the amber ‘DGR’ advisory is displayed, the pilot must initiate a missed approach.
 — Use of ILS, LOC, LOC-BC, LDA, (landing directional aid), SDF (simplified directional facility) and MLS (microwave landing system) approaches are not authorized.
 — When an alternate airport is required by the applicable operating rules, it must be served by an approach based on other than GPS navigation and the aircraft must have operational equipment capable of using that navigation aid, and the required navigation aid must be operational.

4. The aircraft must have other approved navigation equipment installed and operating appropriate to the route of flight.

TORQUE LIMITER FUNCTION

If TORQUE LIMITER is set, max AEO TQ available is 114%/114%

ENGINE EEC LIMITATIONS

In ambient conditions above 43°C, if the aircraft is to be parked with engine off, internal or external electrical power must not be supplied.

Electrical power may be supplied for Pre Start Checks and Engine Start. For maintenance checks refer to AW139 Maintenance Publication Document No. 39-A-AMP-00-P.

SYNOPTIC MFD PAGE LIMITATIONS

In case of MAU1(2) failure, do not refer to the electrical and hydraulic synoptic page. The information presented is not reliable.

HEADSET/HELMET LIMITATIONS

Headset/Helmet type used in the aircraft must be of the same electrical characteristics and authorised by Aircraft Manufacturer.
INCREASED GROSS WEIGHT 6800KG

General
For operations with Increased Gross Weight the aircraft must be in accordance with the requirements as detailed in RFM Supplement 50.

The following limitations are for operations between 6400 kg and 6800 kg, all other limitations remain unchanged.

Normal and Emergency Procedures remain unchanged

WEIGHT AND CENTER OF GRAVITY LIMITATIONS
Maximum gross weight for towing ..6450 kg
Maximum gross weight for taxiing ..6800 kg
Maximum gross weight for take-off and landing6800 kg
CAT B WAT Limitations chart .. Figure GW EXT 5
CAT A Clear Area WAT Limitations chart Figure GW EXT 5
CAT A Confined Area WAT Limitations Figure GW EXT 6
CAT A Off Shore WAT Limitations chart Figure GW EXT 7

CENTER OF GRAVITY
Longitudinal Limits ... Figure GW EXT 1
Lateral limits ... Figure GW EXT 2

AIRSPEED LIMITATIONS
Maximum airspeed for weights above 6400kg Figure GW EXT 3
Maximum airspeed in sideward or rearward flight for weights above 6400 kg ... Figure GW EXT 9
Maximum allowable tailwind and crosswind for weights above 6400 kg ... Figure GW EXT 9

GROUND SPEED LIMITATIONS
Maximum taxi speed for weights above 6400kg 20 knots
Maximum for emergency landing speed for weights above 6400kg (nose wheel locked in fore and aft position) 40 knots
Taxiing on grass surfaces at weights above 6400kg is prohibited

ALTITUDE LIMITATIONS
Maximum operating altitude for weights above 6400kg 8000 ft Hp or Hd
 whichever comes first

AMBIENT AIR TEMPERATURE LIMITATIONS (OAT)
Maximum and minimum air temperature limitations for operations above 6400 kg .. Figure GW EXT 4

HEIGHT- VELOCITY LIMITATIONS
Height Velocity Diagram for weights above 6400kg Figure GW EXT 8
CAT A MISCELLANEOUS LIMITATIONS

Offshore Heliport / Helideck Size

Minimum demonstrated helideck size for Take-Off and Landing for weights between 6400 kg & 6800 kg

Take Off ... Diameter 15 m (50 ft)
..or 15 m x 15 m (50 ft x 50 ft)

Landing... Diameter 22 m (72 ft)
..or 22 m x 22 m (72 ft x 72 ft)

PERFORMANCE INFORMATION

Single Engine Failure in Hover OGE Flyaway procedure

weights between 6400 kg and 6800 kg Figure GW EXT 10
Figure GW EXT 1 Weight and Longitudinal CG Envelope 6800 kg
Figure GW EXT 2 Weight and Lateral CG Envelope 6800 kg
Figure GW EXT 3 Vne Limitations for Weights above 6400 kg
Figure GW EXT 4 Altitude- Temperature Limitations for Weights above 6400 kg
WEIGHT-ALTITUDE-TEMPERATURE

EAPS NOT INSTALLED
Cat.A NR=102%
Cat.B NR=100%

Figure GW EXT 5 Weight Limitations CAT A Clear Area and CAT B
for weights above 6400 kg
Figure GW EXT 6 Weight Limitations CAT A Confined Area for weights above 6400 kg
Figure GW EXT 7 Weight Limitations CAT A Offshore Helideck for weights up to 6800 kg
Figure GW EXT 8 Height Velocity Limitations for Weights above 6400 kg
Figure GW EXT 9 Controllability Envelope for Low Speed Manoeuvres for weights above 6400 kg
HEIGHT LOSS DURING FLYAWAY MANOEUVRE WEIGHTS BETWEEN 6400 KG AND 6800 KG

Figure GW EXT 10 Height Loss During Flyaway Weights from 6400 kg to 6800 kg
T-O AND LANDING ALTITUDE EXTENSION (9 PASSENGER SEAT CONFIGURATION)

General
For operations within the Take Off and Landing Altitude Extension the aircraft must be in accordance with the requirements as detailed in RFM Supplement 51.
The following Limitations are for operations in the T-O and Landing Altitude Extension, all other limitations remain unchanged.
Normal and Emergency Procedures remain unchanged.

NUMBER OF OCCUPANTS
The total number of occupants in passenger cabin shall not exceed........9

WEIGHT LIMITATIONS
CAT B WAT T-O and Landing see Hover Ceiling IGE @ TOP
... Figure ALT EXT 1

AIRSPEED LIMITATIONS
Maximum airspeed in sideward or rearward flight Figure ALT EXT 4
...(for operations above
..14000 ft NR must be
..set to 102%)

AMBIENT AIR TEMPERATURE LIMITATIONS (OAT)
Maximum and minimum air temperature limitation Figure ALT EXT 2

HEIGHT- VELOCITY LIMITATIONS
Height velocity diagram is considered performance
information.. Figure ALT EXT 3

PERFORMANCE INFORMATION
Single engine Failure in Hover OGE flyaway procedure Figure ALT EXT 5
HOVER CEILING IN GROUND EFFECT
TAKE OFF POWER AEO

ROTOR SPEED: 100%-102%
ZERO WIND

WHEEL HEIGHT: 5 FT
ELECTRICAL LOAD: 600 A TOTAL
COND ON: reduce weight by 50 kg

Figure ALT EXT 1 Hover Ceiling IGE at TOP
Figure ALT EXT 2 Altitude and OAT Limitations for Extended Envelope Operations (Maximum 9 passenger seats)
Figure ALT EXT 3 Height Velocity Chart for Extended Envelope Operations (Maximum 9 passenger seats)
Figure ALT EXT 4 Controlability Envelope for Low Speed Maneuvres for Extended Envelope Operations
(Maximum 9 passenger seats)
HEIGHT LOSS DURING FLYAWAY MANOEUVRE
EXTENSION TO 19000 FT

Figure ALT EXT 5 Height Loss during Flyaway up to 19000 ft
NORMAL PROCEDURES

GENERAL

The following procedures are intended to ensure that the level of safety required by the design and certification process is achieved.

Note
Throughout this Section, checks marked with a large ▶ are required only before the first flight of the day. All other checks are to be carried out before each flight.

Normal and standard conditions are assumed in these procedures.

The minimum and maximum limits, and the normal and cautionary operating ranges are indicated on the PFD and MFD displays.

FLIGHT PLANNING

CAT B WEIGHT AND H-V DETERMINATION

Graphs are presented in Limitations to determine maximum weight for CAT B Take Off/Landing/IGE manoeuvres (Figure 1-5) and to determine the H-V (Figure 1-4) avoid area diagram.

The order of flight planning is first to determine the CAT B weight for Take Off and Landing at the ambient conditions then to confirm the H-V avoid area diagram applicable for the weight chosen.

CATEGORY A PROCEDURES

See Supplement 12 for detailed information on CATEGORY A procedures.

CATEGORY A TAKE OFF:

VERTICAL PROCEDURE

TDP ... 35ft ATS
TDP_e ... 35ft to 70ft ATS
Minimum height during CTO 15ft or (TDP_e - 20ft) ATS
Height at end of CTO distance TDP or TDP_e

SHORT FIELD PROCEDURE

TDP ... 35ft AGL
TDP_e ... 35ft to 400ft AGL
Minimum height during CTO TDP or (TDP_e - 20ft)
Height at end of CTO distance TDP or TDP_e

BACK UP PROCEDURE

TDP_e ... 85ft to 400ft ATS
Minimum height during CTO (TDP_e - 70ft) ATS
Height at end of CTO distance See Supp 12

CLEAR AREA PROCEDURE

TDP ... 30ft AGL
CONFINED AREA PROCEDURE
TDP .. Min 100 ft to Max 400 ft ATS

OFFSHORE HELIDECK PROCEDURE
TDP .. 20 ft ATS
Rotation Point .. 30 ft ATS
See chart below for Take Off Target PI

CATEGORY A LANDING:
HELIPORT/HELIDECK PROCEDURE
LDP V Height ... 50 ft to 400 ft ALS
LDP V Airspeed ... 20 KIAS
LDP V Rate of Descent Less than 350 ft/min

CLEAR AREA PROCEDURE
LDP Height .. 50 ft AGL
LDP Airspeed ... 50 KIAS
LDP Rate of Descent Less than 350 ft/min

CONFINED AREA PROCEDURE
LDP Height .. Max 400 ft to Min 100 ft ALS
Groundspeed:
• for LDP between 400 ft and 250 ft 15 to 20 kts
• for LDP below 250 ft to 100 ft Defined by height only
Rate of Descent 400 ft/min to 500 ft/min
OFFSHORE HELIDECK PROCEDURE

LDP Height ... 40 ft ALS
LDP Groundspeed ... 15 kts
LDP Rate of descent ... 0 ft/min

GROSS WEIGHT AND CENTER OF GRAVITY

Determine both the take-off and estimated landing Gross Weight, Center of Gravity and verify that they are within approved envelope limits. The Weight and Balance and appropriate performance charts must be used to ascertain the weight and balance data as follows:
- Consult RFM Section 6 - Weight and Balance
- Ascertain weight of fuel, oil, payload etc.
- Compute take off and anticipated gross landing weight
- Check helicopter centre of gravity (CG) position
- Confirm that the weight and CG limitations in Limitations are not exceeded

COLD WEATHER OPERATION

If the helicopter is to remain parked outside with an OAT at or below -20°C both Main and Auxiliary batteries should be removed and stored in a heated room. Confirm batteries have been installed before flight.
EXTERNAL PRE-FLIGHT CHECKS

The inspection commences at the nose and continues clockwise around the helicopter. During the inspection, check that there are no leaks from overboard drains, that all vents, air intakes, air outlets and fire access points are clear of obstructions, and all access panels and antennas are secure.

Pilot’s Pre Flight Check (pilot walk around and interior checks)

Preflight Check Sequence

AREA N°1 : Helicopter nose
AREA N°2 : Fuselage - RH side
AREA N°3 : Tail boom - RH side
AREA N°4 : Fin, intermediate/tail gearbox, tail rotor
AREA N°5 : Tail boom LH side
AREA N°6 : Fuselage - LH side
AREA N°7 : Cabin and Cockpit interior
CHECKS

1. Main and tail rotor tie downs (if present) — Removed.

AREA N°1 (Helicopter Nose)

2. Nose exterior — Condition.
3. Pitot-Static Probe (Left side) — Cover removed, condition and un-obstructed.
4. Left side brake lines in brake pedal area (looking through bottom transparent panel) — Condition.
5. Nose landing gear — Condition, shock strut extension, leaks, tire pressure.
7. Nose compartment access door — Latched and Secure.
8. Pitot-Static Probe (Right side) — Cover removed, condition and obstructions.
9. Right side brake lines in brake pedal area (looking through bottom transparent panel) — Condition.

AREA N°2 (Fuselage - Right Hand Side)

10. Windshield and roof transparent panel — Condition, cleanliness.
13. Pilot cabin door — Condition, cleanliness, window secure.
15. Right side emergency exits — Verify secure.
17. Drains and vent lines — Free of obstructions.
18. Fuel tank sump area (Right side) — Confirm no leaks.
19. Baggage compartment, tie down/net — Condition, cargo (if on board) correctly secure.
21. Engine area — Check for fuel and/or oil leaks.
22. Cowling and fairings — Condition and latched.
23. Air intakes — Clear and unobstructed.
24. Main rotor components and blades — General condition.
25. Main rotor damper indicators — Position.
<table>
<thead>
<tr>
<th>Check Item</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Engine air intake screen</td>
<td>Cover removed, free of damage and obstruction.</td>
</tr>
<tr>
<td>27. Engine cowling</td>
<td>Secure.</td>
</tr>
<tr>
<td>29. Engine exhaust</td>
<td>Cover removed, condition.</td>
</tr>
<tr>
<td>30. Fire Bottle over-pressure indicator</td>
<td>Green.</td>
</tr>
<tr>
<td>AREA N°3 (Tail Boom - Right Hand Side)</td>
<td></td>
</tr>
<tr>
<td>31. Tail boom exterior</td>
<td>Condition.</td>
</tr>
<tr>
<td>32. Antenna (1)</td>
<td>Condition.</td>
</tr>
<tr>
<td>33. Stabilizer</td>
<td>Condition and secure.</td>
</tr>
<tr>
<td>AREA N°4 (Fin, Intermediate and Tail Gearbox, Tail Rotor)</td>
<td></td>
</tr>
<tr>
<td>35. Tail fin</td>
<td>Condition.</td>
</tr>
<tr>
<td>36. Intermediate and tail rotor gearbox</td>
<td>Check for leaks.</td>
</tr>
<tr>
<td>37. Tail navigation and anticollision lights</td>
<td>Condition.</td>
</tr>
<tr>
<td>38. Tail rotor hub and blades</td>
<td>Condition, cleanliness.</td>
</tr>
<tr>
<td>39. Tail rotor pitch change mechanism</td>
<td>Condition.</td>
</tr>
<tr>
<td>AREA N°5 (Tail Boom Left Hand Side)</td>
<td></td>
</tr>
<tr>
<td>40. Tail boom exterior</td>
<td>Condition.</td>
</tr>
<tr>
<td>41. Stabilizer</td>
<td>Condition and secure.</td>
</tr>
<tr>
<td>42. Navigation light</td>
<td>Condition.</td>
</tr>
<tr>
<td>43. Antenna (1)</td>
<td>Condition.</td>
</tr>
<tr>
<td>44. Tail rotor drive shaft cover</td>
<td>Secure.</td>
</tr>
<tr>
<td>AREA N°6 (Fuselage Left Hand Side)</td>
<td></td>
</tr>
<tr>
<td>45. Fuselage exterior</td>
<td>Condition.</td>
</tr>
<tr>
<td>46. Engine exhaust</td>
<td>Cover removed, condition.</td>
</tr>
<tr>
<td>47. Fire Bottle over-pressure indicator</td>
<td>Green.</td>
</tr>
<tr>
<td>48. Baggage compartment, tie down/net</td>
<td>Condition, cargo (if on board) correctly secure.</td>
</tr>
<tr>
<td>49. Baggage door</td>
<td>Secure.</td>
</tr>
<tr>
<td>50. Engine area</td>
<td>Check for fuel and/or oil leaks.</td>
</tr>
<tr>
<td>51. Engine air intake screen</td>
<td>Cover removed, clear of damage and obstructions.</td>
</tr>
<tr>
<td>52. Engine cowling</td>
<td>Secure.</td>
</tr>
<tr>
<td>53. Air intakes</td>
<td>Clear and unobstructed.</td>
</tr>
<tr>
<td>54. Main rotor components and blades</td>
<td>General condition.</td>
</tr>
<tr>
<td>55. Left side emergency exits</td>
<td>Confirm secure.</td>
</tr>
<tr>
<td>56. Drains and vent lines</td>
<td>Free of obstructions.</td>
</tr>
</tbody>
</table>
57. Fuel tank sump area (Left side) — Confirm no leaks.
58. Main landing gear — Condition, shock strut extension, leaks, tire pressure.
59. Passenger door — Secure.
60. Cowling and fairings — Condition.
61. Co-pilot cabin door — Condition, cleanliness, window secure.
62. Windshield and roof transparent panel — Condition and cleanliness.
63. Windscreen wiper — Condition.

AREA N°7 (Cabin and Cockpit Interior)

64. Passenger Emergency exits — Verify secure.
65. Cabin interior — Equipment and cargo secure.
66. First Aid Kit — On board.
67. Cabin fire extinguisher — secure, charge.
68. Passenger doors — Secure.
69. Pilot and Copilot safety belt and inertia reel — Condition.
70. Pilot and Copilot seat — Secure.
71. Pilot and Copilot flight controls — Condition and secure.
72. Lower and lateral transparent panels — Integrity, cleanliness and no signs of brake fluid.
73. Pilot and Copilot door — Secure.
74. Instruments, panels and circuit breakers — Condition and legibility.
COCKPIT/ENGINE PRE-START CHECKS

1. Pedals and seats — Adjust
2. Seat belt — Fasten and adjust.
3. Circuit breakers — All engaged
4. ECL’s — Confirm at FLIGHT
5. All switches — OFF or closed.
6. ENG 1 and ENG 2 MODE switches — OFF
7. ELT switch on instrument panel — Confirm ARM
8. LDG GEAR lever — Confirm DOWN.
9. External Power (if used) — Connect and switch ON.
10. Ground support personnel — Connected (If required)
11. BATTERY MASTER — ON

Note
If External Power not available carry out checks marked with ♦ on BATTERY to conserve battery power. The remaining checks should be completed after the first engine start.

12. ♦ Main and Aux Battery — ON
13. EXT PWR — ON (if required).
14. ♦ GEN 1 & 2 — ON
15. ♦ BUS TIE — AUTO
16. POSITION lights switch — Confirm functioning then leave as required.
17. ♦ ANTI-COLL lights switch — ON.(confirm functioning)
18. LT Panel switch — ON. confirm emergency lights functioning: cabin (2), sponson (left and right), cockpit door (left and right) — OFF or ARM, as required
19. MFD — Set SYSTEM page, select SYS CONFIG, verify Top Level System Part Number (EPIC software release) installed:
 - No EB 7030191-00105 Phase 4 or
 - No EB 7030191-00107 Phase 5 or
 - No EB 7030191-00108 Phase 6
20. ♦ MFD — Set powerplant page and check configuration setting.

Note
If MFD/PFD are in composite mode, reset to NORMAL before starting using RCP switches (MFD ONLY-PFD ONLY-NORMAL)
21. ♦ CAS messages — Check
22. ♦ MFD — Check fuel quantity
23. ♦ LDG GEAR panel — Check 3 green lights and EMER DOWN switch secure
24. ♦ PARK BRAKE — Pull and turn handle and press pedals until PARK BRAKE ON advisory illuminates.
25. ♦ RAD MSTR switch — As required (GND if battery start)
26. ♦ FORCE TRIM switch — ON
27. ♦ CLTV/YAW TRIM switch — ON
28. ♦ AWG switch — As required (REGRADE or INHIBIT position disables “150 FEET” voice message) See Note page 62
29. LD-SH switch — TORQUE
30. AFCS — Confirm not engaged.
31. Cyclic stick — Centred
32. Collective lever — Full down, friction as required
33. ♦ Flight Controls — Push ELEC PUMP on HYD panel. Carry out cyclic, collective and yaw pedals full and free check. Utilizing the cyclic position indicator, on PFD, centralize cyclic control. ELEC HYD PUMP select OFF

[CAUTION]
Full and free check should be carried out with slow displacement of the controls and one control at a time in order not to overload the electric pump.

Note
Cyclic position indicator is only presented on the PFD when the aircraft is on the ground and the collective is near its down position (MPOG)

Note
Electric hydraulic pump disengages automatically after 2 minutes
34. HYD SOV switch — Centred and guarded
35. ♦ FIRE WARNING TEST push button — Press, on the TEST control panel, BAG and confirm the following visual warnings:
 - MWL illuminate
 - ‘BAG FIRE’ CAS warning
 - ‘BAG’ on FIRE EXTING panel
 - Audio tone and voice warning (“WARNING WARNING”)
— Press ENG1, confirm the following visual and audio warnings:
 - ENG 1 ECL fire light
 - ENG 1 FIRE on FIRE EXTING panel
 - MWL and MCL illuminate
 - ‘1 ENG FIRE’, CAS warning
 - ‘1 FIRE DET’, CAS caution
 - Audio tone and voice warning
 (“ENGINE 1 FIRE”)
 - FIRE 1 on ENG CONTROL panel

— Press ENG2, confirm the following visual and audio warnings:
 - ENG 2 ECL fire light
 - ENG 2 FIRE on FIRE EXTING panel
 - MWL and MCL illuminate
 - ‘2 ENG FIRE’, CAS warning
 - ‘2 FIRE DET’, CAS caution
 - Audio tone and voice warning
 (“ENGINE 2 FIRE”)
 - FIRE on 2 ENG CONTROL panel

36. FUEL pushbutton — Fuel test starts automatically at electrical power on. Confirm 1(2) FCU TEST FAIL caution not illuminated.

— If further test required press pushbutton and confirm the following:
 - ‘TEST’ replaces ‘FUEL’ legend on Pilot and Copilot MFD
 - 1(2) FCU TEST FAIL caution not illuminated.

37. CHIP DETECTOR pushbutton — Press ENG 1 pushbutton and confirm CAS caution: 1 ENG CHIP and MCL illuminates

— Press ENG 2 pushbutton and confirm CAS caution: 2 ENG CHIP and MCL illuminates

38. AWG TEST pushbutton — Press, momentarily, on the TEST control panel, AWG. Confirm the AURAL SYSTEM TEST message is heard. If required PRESS and hold pushbutton for 6 seconds and confirm the following aural warnings:
 - Audio tone and voice warning
 (“WARNING”)
 - Rotor low
 - ENGINE 1 OUT, ENGINE 2 OUT
 - ENGINE 1 FIRE, ENGINE 2 FIRE
 - Rotor high, ENGINE 1 IDLE
 - ENGINE 2 IDLE, WARNING
39. ♦ OIL LEVEL
 Pushbutton
 — Press MGB pushbutton and confirm CAS
cautions: MGB OIL LOW and MCL illuminates
 — Press IGB pushbutton and confirm CAS
cautions: IGB OIL LOW and MCL illuminates
 — Press TGB pushbutton and confirm CAS
cautions: TGB OIL LOW and MCL illuminates

40. ♦ LAMP TEST
 pushbutton
 — Press and confirm the following illuminate.
 - MWL and MCL illuminate
 - ENG 1 & 2 FIRE/ARM and BAG on FIRE
 EXTING panel
 - FIRE lights on ENG CONTROL panel
 - HYD 1 & 2 PRESS/TEMP & ELEC PUMP
 ON, on HYD panel
 - NOSE/LH/RH red and green lamps,
 NOSE WHEEL UNLK/LOCK lamps on
 LDG GEAR panel
 - All green indications on the AUTOPILOT
 and GUIDANCE CONTROL panel

41. ♦ RPM switch
 (on collective)
 — Set 100% (102% for CAT A)

42. ♦ 1 ENG GOV
 (on collective)
 — AUTO

43. ♦ 2 ENG GOV
 (on collective)
 — AUTO

44. ENG TRIM beep
 switches
 (collective)
 — Verify operation, then leave the engine con-
 trol levers in the FLIGHT position.
 ♦ On BATTERY power use a single “click”
 back and forward to confirm ECL stops in
 FLIGHT gate.
Note
Each engine trim beep switch controls the respective control lever from MIN to FLIGHT position when in AUTO mode, and from MIN to MAX position when in MANUAL mode.

Note
Both engines control levers should always be operated through the beep switches located on the collective control. They should be operated manually only in case of failure of the remote control (ECL FAIL caution message), or before starting, to position the lever to FLIGHT.

ABORTED ENGINE START PROCEDURES

CAUTION
Failure to follow the appropriate Abort Procedure may cause damage to the engine.

Engine starting malfunctions are most likely to occur during the engine acceleration cycle to IDLE speed. The list below details the cockpit indications associated with malfunctions and the recommended Abort Procedure. It is important that flight crews be thoroughly familiar with these procedures.

Monitor engine start and if any of the following occur:

- light up is not within 10 seconds of ENG MODE to IDLE.
- abnormal noise heard
- ITT increases beyond engine limits (HOT START caution illuminated)
- engine hangs (stagnation in NG below 54%)
- the main rotor has not begun to rotate when the gas generator (NG) reaches 40%
- engine starter fails to disengage by 49% NG.

shut down engine by:

1. ENG MODE switch — OFF
 If engine does not SHUT OFF then:
 ECL — OFF
2. FUEL PUMP — OFF
3. ENG FUEL switch — OFF
DRY MOTORING PROCEDURE

Following an aborted start shutdown, perform the following procedure allowing a 30 seconds fuel drain period before restarting. The procedure is used to clear internally trapped fuel and vapor:

Note
Observe the igniter and starter generator duty cycle limitations during re-start attempts. Refer Limitations.

1. ENG GOV switch — AUTO
2. ENG MODE switch — OFF
3. ECL — OFF
4. FUEL PUMP switch — OFF
5. ENG FUEL switch — OFF (fuel valve indicator bar horizontal)
6. ENGINE IGN circuit breaker (Ringed in WHITE on CB panel) — Out (Overhead CB panel)
7. ENG MODE switch — Select idle as necessary (not more than 45 seconds. Starter Duty Cycle must be respected)

Note
To operate the starter it is possible to select ENG GOV switch to MANUAL mode, then push the starter push button on the ECL.

8. Gas generator (NG) — Note increasing
9. ENG MODE switch — OFF as necessary
10. ENGINE IGN circuit breaker — In
NORMAL ENGINE START

CAUTION

An engine battery start should not be attempted if the MAIN BUS 1 voltage is below 23V.

Note

During battery start FUEL PUMP 1(2) may illuminate temporarily.

Either engine may be started first and it is recommended that normal engine starts be made using the AUTO mode. For starting procedure in MANUAL mode refer to Emergency and Malfunction Procedures.

Note

If engine N°2 is to be started first, set BUS TIE switch to ON and confirm MAIN BUS 2 voltage is not below 23V.

1. Rotor brake (if fitted) — Confirm OFF, ROTOR BRAKE ON advisory extinguished.
2. ENG 1 FUEL switch — ON - Fuel valve indicator bar vertical.
3. MFD display — Confirm PWR PLANT page.
4. FUEL PUMP 1 switch — ON - 1 FUEL PUMP caution out, check pressure.
5. ENG 1 MODE switch — IDLE

Note

It is recommended to start the engine to IDLE, if necessary, it is possible to start to FLIGHT by setting the ENG MODE switch directly to FLT.

6. Gas Producer (NG) — Note increasing and START legend displayed.
7. Engine temperature (ITT) — Note increasing and IGN legend displayed.
8. Engine oil pressure — Confirm rising.
9. Engine N°1 starter — Disengaged by 49% NG
10. Main hydraulic system — When the main rotor begins to rotate, confirm rise in main hydraulic pressure.
 — Confirm cyclic control centralized on PFD indicator.
11. N°1 engine power turbine speed (NF) and rotor speed (NR) — Confirm both stabilized to IDLE speed of 65%±1%

Note

If the engine was started directly to FLT the NF will stabilize at 100% with rotor speed.(NR)

12. Engine and transmission oil — Check pressures and temperatures within limits.

— ENG START —

Rev. 8 Lims-Norm-Perf Page 37
13. ENG 1 MODE switch — FLT
14. ♦ If BATTERY start carried out, complete pre-start checks

ENGINE 2 START
15. ENG 2 FUEL switch — ON - Fuel valve indicator vertical
16. FUEL PUMP 2 switch — ON - 2 FUEL PUMP caution out, check pressure.
17. GEN 1 — Check loadmeter in GREEN band (if EXT PWR not used)
18. Repeat above procedure for engine N°2

[CAUTION]
Ensure second engine engages as the NF reaches FLIGHT condition. A failed engagement is indicated by positive NF value and near zero torque. If this occurs, shut down the non engaged engine first and when engine stopped shut down other engine. If a hard engagement occurs, shut down both engines for maintenance action.

19. Engine and transmission parameters — Check within limits.
20. External power switch — OFF and disconnect external power (if used).
21. GEN 1 and GEN 2 switches — Confirm ON
22. BUS TIE switch — Confirm AUTO
23. RAD MSTR switch — ON
24. Clock — Set
25. Rotor speed — Confirm 100%
QUICK ENGINE START

This procedure may be carried out on BATTERY to speed up the Take Off.

1. BUS TIE switch — ON
2. Rotor brake (if fitted) — Confirm OFF, ROTOR BRAKE ON advisory extinguished.
3. ENG 1 FUEL switch — ON - Fuel valve indicator vertical
4. MFD display — Confirm PWR PLANT page
5. FUEL PUMP 1 switch — ON - Check pressure.
6. ENG 2 FUEL switch — ON - Fuel valve indicator vertical
7. FUEL PUMP 2 switch — ON - Check pressure.
8. ENG 1 MODE switch — FLT
9. ENG 2 MODE switch — FLT when N°1 engine NG is above 25%.

CAUTION

Avoid operating the ENG MODE switches simultaneously

10. Gas Producer (NG) — Note increasing and START legend displayed.
11. Engine temp.(ITT) — Note increasing and IGN legend displayed.
12. Engine oil pressure — Confirm rising
13. Engine N°1 & N°2 starters — Disengaged by 49% NG
14. Main hydraulic system — When the main rotor begins to rotate, confirm rise in main hydraulic pressure
— Confirm cyclic control centralized on PFD indicator
15. N°1 & N°2 engine power turbine speed (NF) — Confirm stabilized at 100%
16. Engine and transmission oil — Check pressures and temperatures within limits
17. External power switch — OFF and disconnect external power (if used)
18. GEN 1 and GEN 2 switches — Confirm ON
19. BUS TIE switch — Confirm AUTO
20. RAD MSTR switch — ON
21. Clock — Set
22. Rotor speed — Confirm 100%
23. VENT switches — As required
SYSTEM CHECKS

1. MFD PWR PLANT page — Check all parameters within limits.
2. Main Hydraulic — Pressure and temperature within limits. Make small cyclic, collective and pedal movements and confirm hydraulic pressure drop not excessive.
 — Centralize cyclic control on PFD indicator.
3. Fuel XFEED switch — Select OPEN, confirm bar horizontal.
 — Select NORM, confirm bar vertical.
4. FUEL PUMP 1 — OFF. Note fall in fuel N°1 pressure, 1 FUEL PUMP caution displayed, automatic operation of cross feed valve (bar horizontal), FUEL XFEED advisory displayed on CAS and consequent increase of fuel N°1 pressure.
5. FUEL PUMP 1 — ON. 1 FUEL PUMP caution out, cross feed automatically closed (bar vertical) and FUEL XFEED advisory extinguishes.
6. FUEL PUMP 2 — OFF. Note fall in fuel N°2 pressure, 2 FUEL PUMP caution displayed, automatic operation of cross feed valve (bar horizontal), FUEL XFEED advisory displayed on CAS and consequent increase of fuel N°2 pressure.
7. FUEL PUMP 1 — OFF. Note fall in fuel N°1 pressure, 1 FUEL PUMP caution displayed, cross feed valve still open (bar horizontal), FUEL XFEED advisory still present. Confirm correct engine operation on engine driven suction pumps.
7a. Fuel XFEED switch — Select CLOSED, confirm bar vertical, wait 15 seconds then confirm correct engine operation on engine 1 and 2.
 Select NORM, confirm bar horizontal.
8. FUEL PUMP 1 & 2 — ON. 1 & 2 FUEL PUMP caution out and cross feed automatically closed (bar vertical) FUEL XFEED advisory extinguishes.
9. OEL TNG switch — Check (if required).
10. MFD page — Select as required.
11. MCDU — Set COM and NAV as required.
12. FD panel — Check in SBY.
13. TEST button on Autopilot controller — Press and follow instruction on MFD AFCS synoptic page. Confirm test completes successfully and no AP messages are displayed on Crew Alert System.
 — Reselect TEST button to return MFD to NORMAL.

14. ICS panels — Set as required. Set BKUP volume as required.

15. AHRS, ADS and display reversion switches — NORM.

16. LT panels — Set as required.

17. CABIN LT panel — Set as required.

18. COMPASS switches — MAG.

19. RAD ALT — Confirm zero altitude (±5ft).

20. DH TEST button on remote instrument controller — Press, confirm RAD ALT 100ft (±10ft) and 'TEST' message displayed, release, confirm zero altitude (±5ft).

21. DH selector on remote instrument controller — Set as required.

23. PITOT HEATER 1 & 2 — ON for conditions of visible moisture at indicated OAT of +4° C or less.

24. POSITION light switch — As required.

25. RPM switch — Set 100%.

26. NR/NF — Confirm stabilized at 100%.

27. LDG LT & LDG LT2 — As required.

28. PARK BRAKE — OFF. Check no PARK BRK ON caution message.

29. Warning and Caution messages — Check as required.
TAXIING

1. NOSE WHEEL lock — Press to UNLK.
2. Collective and cyclic — Increase collective slowly then move the cyclic stick forward moderately to start movement.
3. Pedal brakes — Check operation.
4. Pedal control — As required to select direction.
5. Collective and pedal brakes — To reduce speed and stop, lower collective and apply pedal brakes.
6. NOSE WHEEL lock — Press to LOCK.

Note
If the nose wheel is not aligned forward (UNLK caption flashing) it will self centre and lock as soon as the helicopter lifts off.

CAUTION
Do not use aft cyclic to slow the aircraft. The use of large cyclic displacements in conjunction with low collective can cause main rotor hub and cowling damage.

Note
Turning, whilst taxiing, should be carried out with collective at minimum pitch and cyclic central or as required to compensate for crosswind.

PRE TAKE-OFF CHECKS

1. AFCS — Engaged.
2. MFD — Select PWR PLANT page.
3. PARK BRAKE handle — Released.
4. ENG MODE — Confirm both to FLIGHT.
5. ECL — Confirm both to FLIGHT.
6. TQ LIMiter pushbutton — Push, if required, to enable TQ limiter function (LIMITER ON advisory message).

CAUTION
With TQ LIMiter enabled, the AEO engine total torque will be limited to a combined torque value of 228%TQ. OEI engine torque limit will remain at 160%TQ.
7. CAS — Clear/as required.
TAKE-OFF PROCEDURES

TAKE-OFF CATEGORY B PROCEDURE

1. Hover — Establish at 5 feet AGL. If possible avoid relative winds between 135° and 225° (quartering tail winds).

2. NOSE WHEEL steering — Confirm LOCK.

3. Power checks — Carry out daily power checks in accordance with IN FLIGHT POWER CHECKS procedure in PERF section.

4. Engines/Rotor — Check TQ/ITT matching and NR 100%.

5. Warnings and cautions — Confirm none displayed.

6. MFD PWR PLANT page — Check all parameters within normal operating limits and confirm no engine matching abnormalities.

7. Flight controls — Check correct functioning.

8. Collective/Cyclic Control — Apply cyclic to commence a nose down attitude change of 7°. At approximately half way through the rotation apply collective to increase PI to 5% above the hover PI.

9. Acceleration and Climb — Accelerate forward and climb to achieve 50ft above take off surface at 50 KIAS, continue up to 80 KIAS.

10. Climb — At 80KIAS (Vy) adjust attitude to stabilize at Vy and climb smoothly.

11. Power limits — Observe PI limitations for Take Off power rating.

12. Landing gear — UP (by 200ft AGL).

13. NR/NF — Confirm 100%.

15. Power — Adjust, as required, for cruise flight or continued climb.

TAXI T-O CAT A/B
CATEGORY A TAKE-OFF GENERAL
When Take-Off is carried out from the left hand seat the right hand pilot should monitor engine parameters.

CATEGORY A TAKE-OFF VERTICAL, SHORT FIELD AND BACK UP PROCEDURE
1. LDG LT & LDG LT2 switches — As required.
2. Rotor speed — Set 102% NR.
3. PARK BRAKE — Apply. Confirm PARK BRAKE ON advisory illuminated on CAS.
4. HEATER (if fitted) — Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to AUTO, note ITT increase on both engines, and HEATER ON advisory illuminates. Select HTR switch to OFF, note ITT decrease, on both engines, and HEATER ON advisory extinguished.
5. Power checks — Carry out daily power checks in accordance with IN FLIGHT POWER CHECKS procedure in PERF section.
6. Pilot Altimeter — Set 0ft, or nearest 1000ft setting to T-O altitude, with collective at MPOG.
7. Hover — Establish a 5ft ATS hover.
8. Flight controls — Check correct functioning.
9. MFD PWR PLANT page — Check all parameters within normal operating limits.
10. Warnings and Cautions — Confirm none displayed.
11. PI/NR — Check PI’s matched, NR 102%. Note PI value.
12. Collective/Cyclic Control — Increase PI by 23% above hover value (if 23% is not available, without exceeding Take Off PI, increase to 110%) in 2 seconds, • for Vertical procedure initiate a vertical climb to TDP while adjusting the pitch attitude to maintain position over the Take Off point. • for Back Up procedure initiate a rearwards climb to TDP while maintain view of the heliport/helideck.
13. Take-Off Decision Point (TDP) — At required TDP height rotate nose down to 10° attitude in 1 second. Maintain this attitude for 1 second then recover pitch attitude to 0° to climb and accelerate to VTOSS (40 KIAS). Maintain collective position.
14. Acceleration/Climb — When V_{TOSS} (40KIAS) is achieved adjust pitch attitude to approximately 5° nose up. Maintain collective position, continue climb and acceleration until V_Y.

15. Climb — At V_Y, adjust attitude to stabilize speed. Continue climb.

16. Landing gear — UP (when reaching V_Y but not below 200ft ATS).

17. NR/NF — Select 100% at V_Y

18. After Take-Off checks — Complete.

19. Power — Adjust collective to continue climb at V_Y utilizing up to Take-Off power, as required, to 1000ft ATS.

20. At 1000ft ATS — Adjust collective and cyclic to continue climb at V_Y or accelerate to cruise speed as required.

21. HEATER — As required.

22. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.

23. LDG LT & LDG LT2 switches — OFF (if used).

24. Pilot Altimeter — Set as required.

CATEGORY A TAKE-OFF CLEAR AREA PROCEDURE

1. LDG LT & LDG LT2 switches — As required.

2. Rotor speed — Set 102% NR.

3. HEATER (if fitted) — Confirm SOV 1 & 2 switches selected to NORMAL.
 Select HTR switch to AUTO, note ITT increase on both engines, and HEATER ON advisory illuminates.
 Select HTR switch to OFF, note ITT decrease, on both engines, and HEATER ON advisory extinguished.

4. Power checks — Carry out daily power checks in accordance with IN FLIGHT POWER CHECKS procedure in PERF section.

5. Pilot Altimeter — Set 0ft, or nearest 1000ft setting to T-O altitude, with collective at MPOG.

6. Hover — Establish a 5ft AGL hover.

7. Flight controls — Check correct functioning.

8. MFD PWR PLANT page — Check all parameters within normal operating limits.
9. Warnings and Cautions — Confirm none displayed.

10. PI/NR — Check PI’s matched, NR 102%. Note PI value.

11. Collective/Cyclic Control — Apply cyclic to commence a nose down attitude change to -5° and maintain. At approximately half way through the rotation apply collective to increase PI to 18% above hover value (if 18% is not available, without exceeding Take Off PI, increase to 110%).

12. Take-Off Decision Point (TDP) — At 30ft AGL (TDP) continue acceleration Verify V_{T0SS} (50 KIAS) already achieved.

13. Acceleration/Climb — Adjust pitch attitude to approximately 5° nose up and continue climb up to 200ft AGL.

14. Landing gear — UP (when reaching V_y but not below 200ft AGL)

15. NR/NF — Select 100% at V_y

16. Power — Adjust collective to continue climb at V_y utilizing up to Take-Off power, as required, to 1000ft ATS.

17. After Take-Off checks — Complete.

18. At 1000ft ATS — Adjust collective and cyclic to continue climb at V_y or accelerate to cruise speed as required.

19. HEATER — As required.

20. LDG LT & LDG LT2 switches — OFF (if used).

21. Pilot Altimeter — Set as required

CATEGORY A TAKE-OFF CONFINED AREA PROCEDURE

1. LDG LT & LDG LT2 switches — As required

2. Rotor speed — Set 102% NR

3. PARK BRAKE — Apply. Confirm PARK BRAKE ON advisory illuminated on CAS.

4. HEATER (if fitted) — Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to AUTO, note ITT increase on both engines, and HEATER ON advisory illuminates. Select HTR switch to OFF, note ITT decrease, on both engines, and HEATER ON advisory extinguished

5. Power checks — Carry out daily power checks in accordance with ENGINE POWER CHECKS procedure in PERF section.
6. Pilot Altimeter — Set 0 ft, or nearest 1000 ft setting to T-O altitude, with collective at MPOG.

7. Hover — Establish a 5 ft ATS hover.

8. Flight controls — Check correct functioning.

9. MFD PWR PLANT page — Check all parameters within normal operating limits.

10. Warnings and Cautions — Confirm none displayed.

11. PI/NR — Check PI's matched, NR 102%. Note PI value.

12. Collective/Cyclic Control — Increase PI by 10 to 12% above hover value in 2 seconds to initiate a climb, immediately adjusting the attitude to allow slight backwards and left movement with 10 to 15 degrees of left yaw to establish the centre of the heliport in the chin window by 40 ft ATS. (Take Off carried out from left hand seat move right and yaw right)
 After applying initial 10 to 12% PI, continuously and progressively increase PI to achieve the full 23% above hover PI by 40 ft From 40 ft maintain a constant aspect of the heliport in the chin window until reaching TDP.

13. Take-Off Decision Point (TDP) — At required TDP height maintain collective position, recover the 10-15 degrees of yaw, rotate nose down to -10° attitude in 1 second. Maintain this attitude for 1 second then recover pitch attitude to 0° and maintain to accelerate to VTOS (40 KIAS). Maintain collective position.

14. Acceleration/Climb — When VTOS (40 KIAS) is achieved adjust pitch attitude to 5° nose up. Maintain collective position, continue climb and acceleration until Vy.

15. Climb — At Vy adjust attitude to stabilize speed. Continue climb.

16. Landing gear — UP (when reaching Vy but not below 200 ft ATS)

17. NR/NF — Select 100% at Vy

18. Power — Adjust collective to continue climb at Vy utilizing up to Take-Off power, as required, to 1000 ft ATS.

19. After Take-Off checks — Complete
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Power</td>
<td>Adjust collective to continue climb at V_y utilizing up to Take-Off power, as required, to 1000ft ATS.</td>
</tr>
<tr>
<td>21. After Take-Off checks</td>
<td>Complete</td>
</tr>
<tr>
<td>22. At 1000ft ATS</td>
<td>Adjust collective and cyclic to continue climb at V_y or accelerate to cruise speed as required.</td>
</tr>
<tr>
<td>23. HEATER</td>
<td>As required</td>
</tr>
<tr>
<td>24. PARK BRAKE</td>
<td>Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.</td>
</tr>
<tr>
<td>25. LDG LT & LDG LT2 switches</td>
<td>OFF (if used)</td>
</tr>
<tr>
<td>26. Pilot Altimeter</td>
<td>Set as required</td>
</tr>
</tbody>
</table>

CATEGORY A TAKE-OFF OFFSHORE HELIDECK PROCEDURE

1. LDG LT & LDG LT2 switches | As required |
2. Rotor speed | Set 102% NR |
3. PARK BRAKE | Apply. Confirm PARK BRAKE ON advisory illuminated on CAS. |
4. HEATER (if fitted) | Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to AUTO, note ITT increase on both engines, and HEATER ON advisory illuminates. Select HTR switch to OFF, note ITT decrease, on both engines, and HEATER ON advisory extinguished |
5. Power checks | Carry out daily power checks in accordance with ENGINE POWER CHECKS procedure in PERF section. |
6. Pilot Altimeter | Set 0ft, or nearest 1000ft setting to T-O altitude, with collective at MPOG. |
7. Hover IGE | Establish HIGE at 5ft ATS and note hovering PI value. From chart on page 26 confirm HIGE PI value within limit and note corresponding Target PI value. |
8. Flight controls | Check correct functioning. |
9. MFD PWR PLANT page | Check all parameters within normal operating limits. |
10. Warnings and Cautions | Confirm none displayed. |
11. PI/NR | Check PI's matched, NR 102%. |
12. Hover — Establish a hover where the aircraft is in the take-off attitude and the aircraft is held light on the main wheel(s) (nose wheel up) or a 1 to 2 ft hover if more practicable.

13. Collective/Cyclic Control — Increase P1 to Target P1 value (from item 7), in 2 seconds, and initiate a vertical climb to TDP while adjusting the pitch attitude to maintain position over the center of helideck.

14. Take-Off Decision Point (TDP) — PNF calls TDP, continue vertical climb above centre of helideck to 30ft ATS.

15. Rotation — At 30ft height PNF calls ‘ROTATE’, rotate nose down to -10° attitude in 1 second. Maintain -10° attitude for 1 second then recover pitch attitude to 0°. Maintain attitude and accelerate to an airspeed of \(V_{TOSS} \) (40 KIAS). Maintain collective position.

16. Acceleration/Climb — When \(V_{TOSS} \) (40KIAS) is achieved adjust pitch attitude to approximately 5° nose up. Maintain collective position, continue climb and acceleration until \(V_y \).

17. Climb — At \(V_y \) adjust attitude to stabilize speed. Continue climb.

18. Landing gear — UP (when reaching \(V_y \) but not below 200ft ATS)

19. NR/NF — Select 100% at \(V_y \)

20. After Take-Off checks — Complete

21. Power — Adjust collective to continue climb at \(V_y \), utilizing up to Take-Off power, as required, to 1000ft ATS.

22. At 1000ft ATS or cruise altitude if lower — Adjust collective and cyclic to continue climb at \(V_y \) or accelerate to cruise speed as required.

23. HEATER — As required

24. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.

25. LDG LT & LDG LT2 switches — OFF (if used)

26. Pilot Altimeter — Set as required

CAUTION

If the CAT A procedures are modified, it may not be possible, if an engine fails in the Take-Off path, to carry out a safe OEI landing or achieve the scheduled OEI performance.
SLOPING GROUND OPERATION

Note
1(2) WOW FAIL caution may illuminate spuriously during slope Take-Off or Landing procedure

TAKE OFF PROCEDURE
1. PARK BRAKE applied.
2. Increase collective and move cyclic in a coordinated manner to achieve a lift off.
3. Establish hover above take off surface
4. Release PARK BRAKE
5. Take Off as required.

TAXI T-O
CAT A/B
IN-FLIGHT PROCEDURES

AFTER TAKE-OFF

1. Landing gear — Confirm up.
2. LDG LT & LDG LT2 switches — Confirm OFF.
3. Engine parameters, temps and pressures — Normal, temperatures and pressures within limits.
4. LD-SH switch — As required; (TORQUE or TEMP) confirm parameters matched.

Note
The LD-SH switch allows the pilot to maintain engine TORQUE or ITT matched, as required

5. TQ LIMiter pushbutton — As required.
6. CAS — Clear/as required.

Note
During flight below 1000ft AGL fly attentive

7. MFD As required.

CLimb CHECKS

1. VENT — As required.
2. Radios/Navigation — As required.
3. Autopilot mode — As required.

CRUISE CHECKS

1. Collective — Adjust as necessary to keep engine parameters within limits.
2. LD-SH switch — As required; (TORQUE or TEMP) confirm parameters matched.

Note
The LD-SH switch allows the pilot to maintain engine TORQUE or ITT matched, as required.

Note
If the engines are ITT limited on the PI indicator, and there is a large ITT mismatch, the PI matching can be restored by selecting LD-SH switch to TEMP.

3. FUEL — Every 30 minutes:
 Check quantity, XFEED closed or as required

Note
If fuel consumption is greater than expected see Abnormal Fuel Consumption procedure MALFUNCTION / FUEL page 68.

5. PITOT HEATER switches — ON for temperature of below 4°C or flight in visible moisture.
6. Compass — Check all synchronized.
7. Radios/Navigation — As required.
8. Standby instrument — Check airspeed, altimeter and artificial horizon against primary flight display.
9. Autopilot modes — As required.
10. LDG LT & LDG LT2 switches — OFF, if used.
11. MFD — Every flight hour select PWR PLANT page and confirm no engine matching abnormalities.
 — Above 15000ft the PWR PLANT page should be selected and the DC generator load monitored.
PRE-LANDING CHECKS

1. RPM switch — Confirm 100%.
2. NR/NF — Confirm 100%.
3. MFD — Select PWR PLANT page.
4. TQ LIMITER pushbutton — As required.
5. Landing gear lever — DOWN; three green lights on LDG control panel.

Note
For OAT of -30°C and below undercarriage retraction time may double.

6. NOSEWHEEL steering — LOCK.
7. LDG LT & LDG LT2 switches — As required.
8. Temperatures and Pressures — Within limits.
10. RAD ALT bug — As required.
12. PARK BRAKE handle — As required.
14. PITOT HEATER — As required.

Note
If an ILS approach is required select both NAV’s to the same frequency. On STBY instrument (ESIS) select NAV ON and set the course to the final ILS course.
Recommended airspeed:
- Glideslopes up to 4 degrees: 120 KIAS
- Glideslopes between 4 and 7.5 degrees: 100 KIAS

Note
When descending below 150ft AGL vocal message ‘ONE FIFTY FEET’ is activated regardless of the landing gear status. This message is suppressed if AWG switch is set to REGRADE or INHIBIT. See Note page 62.
LANDING

CATEGORY B LANDING PROCEDURE
1. Pre-landing checks — Complete.
2. AWG switch — NORMAL.
3. Landing direction — If possible orientate the aircraft for an approach into the prevailing wind.
4. Initial point — During the approach, reduce airspeed gradually to arrive at a position 200ft above touchdown point with a rate of descent of no more than 500fpm. Initiate a deceleration to achieve 30 KIAS at 50ft. At 50ft rotate nose up to approximately 20° to decelerate.
5. Landing — Continue the deceleration and descent to hover.
6. MFD PWR PLANT page — In hover check all parameters within normal operating limits and confirm no engine matching abnormalities.
7. Touch down — Maximum nose up attitude at touch down 15°. Apply wheel brakes, as required.
8. NOSE WHEEL lock — UNLK if ground taxiing is required.

CATEGORY A LANDING GENERAL
When Landing is carried out from the left hand seat the right hand pilot should monitor engine parameters.

CATEGORY A HELIPORT LANDING PROCEDURE
1. Landing direction — If possible orientate the aircraft for an approach into the prevailing wind.
2. Pre-landing checks — Complete.
3. AWG switch — NORMAL.
4. LDG LT and LDG LT2 switches — As required.
5. Pilot Altimeter — Set QNH (landing surface elevation should be known).
6. HEATER (if used) — Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to OFF, note ITT decrease and confirm HEATER ON advisory extinguished.
7. Rotor speed — Set 102%.
8. PARK BRAKE — Apply, PARK BRAKE ON advisory message illuminated on CAS.
9. Initial point — Establish an approach to pass through 200ft ALS at a rate of descent of no more than 500fpm. Initiate deceleration to achieve LDP, (50ft ALS) at 20KIAS and rate of descent less than 350ft/min. Heliport/Helideck in sight.

10. Landing — Continue the deceleration and descent to a HIGE. Maximum allowed GS at touchdown 5kts.

11. PARK BRAKE — As required.

12. LDG LT & LDG LT2 switches — OFF, if used.

CATEGORY A CLEAR AREA LANDING PROCEDURE

1. Landing direction — If possible orientate the aircraft for an approach into the prevailing wind.

2. Pre-landing checks — Complete.

3. AWG switch — NORMAL.

4. LDG LT and LDG LT2 switches — As required.

5. Pilot Altimeter — Set QNH (landing surface elevation should be known).

6. HEATER (if used) — Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to OFF, note ITT decrease and confirm HEATER ON advisory extinguished.

7. Rotor speed — Set 102%.

8. PARK BRAKE — Confirm released.

9. Initial point — Establish an approach to pass through 200ft ALS at a rate of descent of no more than 500fpm. Initiate deceleration to achieve LDP, (50ft ALS) at 50KIAS and rate of descent less than 350ft/min.

10. Landing — Continue the deceleration and descent to a HIGE.

11. PARK BRAKE — As required.

12. LDG LT & LDG LT2 switches — OFF, if used.

CATEGORY A CONFINED AREA LANDING PROCEDURE

For LDP 250 ft ALS and below:

1. Landing direction — If possible orientate the aircraft for an approach into the prevailing wind.

2. Pre-landing checks — Complete.
3. AWG — NORMAL.
4. LDG LT and LDG LT2 switches — As required
5. Pilot Altimeter — Set QNH (landing surface elevation should be known).
6. HEATER (if used) — Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to OFF, note ITT decrease and confirm HEATER ON advisory extinguished.
7. Rotor speed — Set 102%
8. PARK BRAKE — Apply, PARK BRAKE ON advisory message illuminated on CAS.
9. Initial point — Establish an approach to pass through 350 ft ALS at a rate of descent of no more than 400 fpm and 30 kts groundspeed.
10. Aircraft position — Position helipad in bottom right part of windshield with nose yawed left by approximately 15 degrees.
 • When left hand pilot flying, helipad in bottom left part of windshield and nose yawed right.
11. Descent — Progressively reduce airspeed and height to position helipad into centre of chin window at or just before reaching 250 ft ALS with 15 to 20 kts groundspeed.
12. Landing — Maintain constant flight path aspect to helipad using 400 to 500 fpm rate of descent passing through LDP and continue to a HIGE. Maximum allowed GS at touchdown 5kts.
13. PARK BRAKE — As required.
14. LDG LT & LDG LT2 switches — OFF, if used.

CATEGORY A CONFINED AREA LANDING PROCEDURE
For LDP above 250 ft ALS:
1. Landing direction — If possible orientate the aircraft for an approach into the prevailing wind.
2. Pre-landing checks — Complete.
3. AWG — NORMAL.
4. LDG LT & LDG LT2 switches — As required.
5. Pilot Altimeter — Set QNH (landing surface elevation should be known).
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6. HEATER (if used)</td>
<td>— Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to OFF, note ITT decrease and confirm HEATER ON advisory extinguished.</td>
</tr>
<tr>
<td>7. Rotor speed</td>
<td>— Set 102%</td>
</tr>
<tr>
<td>8. PARK BRAKE</td>
<td>— Apply, PARK BRAKE ON advisory message illuminated on CAS.</td>
</tr>
<tr>
<td>9. Initial point</td>
<td>— Establish an approach to pass through LDP+100 ft ALS at a rate of descent of 400 to 500 fpm and 30 kts groundspeed.</td>
</tr>
<tr>
<td>10. Aircraft position</td>
<td>— Position helipad in bottom right part of windscreen with nose yawed left by approximately 15 degrees. When left hand pilot flying, helipad in bottom left part of windscreen and nose yawed right.</td>
</tr>
<tr>
<td>11. Descent</td>
<td>— Progressively reduce airspeed and height to position helipad into centre of chin window at or just before reaching LDP with 15 to 20kts groundspeed.</td>
</tr>
<tr>
<td>12. Landing</td>
<td>— Maintain constant flight path aspect to helipad using 400 to 500fpm rate of descent passing through LDP and continue to a HIGE. Maximum allowed GS at touchdown 5kts.</td>
</tr>
<tr>
<td>13. PARK BRAKE</td>
<td>— As required.</td>
</tr>
<tr>
<td>14. LDG LT & LDG LT2 switches</td>
<td>— OFF, if used.</td>
</tr>
</tbody>
</table>

CATEGORY A OFFSHORE HELIDECK LANDING PROCEDURE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Landing direction</td>
<td>— If possible orientate the aircraft for an approach into the prevailing wind.</td>
</tr>
<tr>
<td>2. Pre-landing checks</td>
<td>— Complete.</td>
</tr>
<tr>
<td>3. AWG</td>
<td>— NORMAL.</td>
</tr>
<tr>
<td>4. LDG LT & LDG LT2 switches</td>
<td>— As required.</td>
</tr>
<tr>
<td>5. Pilot Altimeter</td>
<td>— Set QNH (landing surface elevation should be known).</td>
</tr>
<tr>
<td>6. HEATER (if used)</td>
<td>— Confirm SOV 1 & 2 switches selected to NORMAL. Select HTR switch to OFF, note ITT decrease and confirm HEATER ON advisory extinguished.</td>
</tr>
<tr>
<td>7. Rotor speed</td>
<td>— Set 102%</td>
</tr>
</tbody>
</table>
8. PARK BRAKE — Apply, PARK BRAKE ON advisory message illuminated on CAS.

9. Initial point — Establish an approach to pass through 200ft ALS at 80 KIAS and a rate of descent of no more than 500fpm.

10. Approach — Progressively reduce speed and height to achieve LDP at 15kts GS and 40ft ALS and approach into wind with the helideck to the side of the PF. Maintain the rotor tip path plane outboard, but close to the edge of the helideck and the aircraft center line parallel to the edge of the helideck.

11. LDP — Maintain 15 kts groundspeed and 40 ft ALS level, the LDP is achieved when the aircraft is at an angle of approximately 45° from the center of the landing point.

12. Landing — From the 45° position fly the aircraft forwards, sideways and downwards towards the landing point, decreasing collective slightly. When descending through 30ft ALS reduce nose up attitude to maximum 10° (See Figure 2I-4). Continue to a hover over the helideck.

13. Touchdown — When over the landing position descend vertically and use collective to cushion touchdown and touch down with 30° to 45° heading offset, if wind speed is less than 10 kts. If wind speed is greater than 10 kts maintain heading with respect to the heading at LDP. Do not exceed 20 kts crosswind. Maximum allowed GS at touchdown 5kts.

14. PARK BRAKE — As required.

15. LDG LT & LDG LT2 switches — OFF, if used.

CAUTION

If the CAT A procedures are modified, it may not be possible, if an engine fails in the landing path, to carry out a safe OEI landing or achieve the scheduled OEI performance.
SLOPING GROUND OPERATION

Note
1(2) WOW FAIL caution may illuminate spuriously during slope Take-Off or Landing procedure

LANDING PROCEDURE
1. Establish hover above landing area.
2. PARK BRAKE applied, (PARK BRAKE ON advisory message on CAS)
3. Lower collective to commence vertical descent.
 When the wheels contact the ground:
4. Move cyclic and collective in a coordinated manner to achieve the cyclic centralized as the collective reaches MPOG.
5. If taxiing required release PARK BRAKE.
POST LANDING AND SHUTDOWN PROCEDURES

POST LANDING CHECKS
1. AFCS — Disengage.
2. LDG LT & LDG LT2 switches — OFF (if used).
3. Position lights — OFF (if used).

PRE-SHUTDOWN CHECKS
1. PARK BRAKE handle — Pull and turn handle, PARK BRK PRESS caution illuminates, press pedals until caution extinguishes and PARK BRAKE ON advisory illuminates.
2. NOSE WHEEL — Push to LOCK, if required.
3. Collective lever — MPOG.
4. Cyclic stick — Centralized on PFD cyclic indicator.
5. Pedals — Centered.
6. Avionics — As required.
7. PITOT HEATER switches — OFF (if used).
8. External Power — If required, carry out EXTERNAL POWER connection procedure.

ENGINES AND ROTOR SHUTDOWN
When it is intended to shutdown engines and rotor, carried out the following procedure:
1. ENG 1 & 2 MODE switches — Set to IDLE.

Note
A period of 120 seconds stabilization at IDLE is recommended
2. BUS TIE switch — ON (for night operations)
3. Fuel PUMP 1 & 2 switches — OFF.
4. ENG 1 & 2 MODE switches — OFF.

CAUTION
During shut down note that:
• NG speed decelerates freely without abnormal noise or rapid run down
• ITT does not rise abnormally
5. Rotor brake (if fitted) — At 40% NR select rotot brake lever to BRAKE position, ROTOR BRAKE ON advisory illuminates. Confirm no abnormal pressure messages illuminate on brake monitor panel. When rotor stopped move lever to OFF.
6. ENG 1 and 2 FUEL valve — OFF. 1 & 2 FUEL PUMP caution messages. (Fuel valve indicator bar horizontal)
7. Fuel XFEED switch — Closed (indicator bar vertical).
8. Cockpit lights — OFF.
9. BUS TIE switch — Confirm AUTO
10. ANTI-COL lights — OFF.

Prior to switching electrical power OFF ensure engine NG values are below 0%.

11. BATTERY MASTER and GENerators — OFF.
12. MAIN and AUX BATTERies — OFF.

POST SHUTDOWN CHECKS
Before leaving the aircraft:
— If the helicopter is to be parked for prolonged periods (greater than 1 hour) the wheels should be chocked.
— If the helicopter is to be parked on sloping ground the wheels should be chocked as soon as possible.
— If the helicopter is to remain outside with an OAT at or below -20°C both Main and Auxiliary batteries should be removed and stored in a heated room.
— If parking with rotor brake required, cycle rotor brake lever (if fitted) from PUMPING LIMIT mark to BRAKE position as necessary to increase pressure to at least 40 BAR, on digital readout, and leave in BRAKE detent.

Up to 8 hours of parking pressure are guaranteed before represurization of the system.
FLIGHT DIRECTOR COUPLED AND UNCOUPLED OPERATIONS

CAUTION

- Whenever the FD is coupled and the AP reverts to SAS or has a complete loss of autostabilization, the FD will revert to uncoupled mode.
- When the AP reverts to SAS no UCPL caption will appear on the PFD.

COLLECTIVE PI LIMITING FUNCTION (4 AXIS FD SYSTEM ONLY)

During collective coupled operation the collective movement is limited by the following PI values:
- Maximum 97% AEO (95% at altitudes above 10000ft Hp),
- Maximum 106% AEO for airspeed less than 60 KIAS (5 MIN message displayed beside collective cue)
- Maximum 140% OEI
- Minimum 5% AEO
- Minimum 10% OEI

CAUTION

If PI limiting is active with ALT/RHT engaged and the reference height cannot be maintained the aural warning “Altitude Altitude” will warn the pilot when the maximum allowed deviation from the reference height has been exceeded.

When flying at high altitude (above 15000ft) select the Load Share switch to TORQUE (MISC panel) to improve the helicopter manoeuvre during automatic turns.

SAFETY FLY-UP FUNCTIONALITY WHEN FD MODES ENGAGED

(Enhance FD with EPIC Software Phase 5, or later)

The following table gives the Safety Height Rad Alt limits and Ultimate Fly-Up Limit for the different collective modes:

<table>
<thead>
<tr>
<th>Hold Mode</th>
<th>Applicable Range</th>
<th>Safety Height (ft AGL)</th>
<th>Ultimate Fly-Up Limit (ft AGL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>All conditions</td>
<td>150 ft</td>
<td>150 ft</td>
</tr>
<tr>
<td>ALTA</td>
<td>All conditions</td>
<td>150 ft</td>
<td>150 ft</td>
</tr>
<tr>
<td>ALT</td>
<td>Airspeed less than 55 KIAS or HOV</td>
<td>35 ft</td>
<td>35 ft</td>
</tr>
<tr>
<td></td>
<td>All other conditions</td>
<td>150 ft</td>
<td>150 ft</td>
</tr>
<tr>
<td>MOT</td>
<td>All conditions</td>
<td>Variable *</td>
<td>35 ft</td>
</tr>
</tbody>
</table>
Safety Height = Rad Alt Reference - (7+1/8xRad Alt Reference)

When the collective is automatically driven up, it is normally limited by the PI limiting function. Should the relevant MUH limits be exceeded the PI limits will be moved up as follows:

- Maximum 121% AEO for airspeeds below 60 KIAS
- Maximum 176% OEI for airspeeds below 60 KIAS
- Maximum 110% AEO for airspeeds above 60 KIAS
- Maximum 160% OEI for airspeeds above 60 KIAS

SPECIFIC MODE INFORMATION

ALT
Barometric Altitude Hold Mode.

CAUTION

In ALT mode the voice message “Altitude Altitude” is triggered when altitude exceeds the reference altitude by ±150ft.

Note

ALT mode can be engaged with HOV mode, (as an alternative to the RHT mode).

ALTA
Altitude Acquire Mode.

Note

For EPIC Software Phase 5, or later, when engaging ALTA while climbing with a rate of climb greater than 1500 fpm or descending with a rate of descent greater than 1500 fpm, the system may erroneously transition to ALT. The aircraft will, however, reach the selected final altitude.

APP
1) VOR/ILS Approach FD functions.

Note

To avoid false localizer captures, APP mode should be armed when the helicopter is flying inbound to the ILS radial.

<table>
<thead>
<tr>
<th>Hold Mode</th>
<th>Applicable Range</th>
<th>Safety Height (ft AGL)</th>
<th>Ultimate Fly-Up Limit (ft AGL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHT</td>
<td>Airspeed less than 55 KIAS, HOV or MOT-DCL or TDH-Pitch All other conditions</td>
<td>Variable *</td>
<td>15 ft 75 ft</td>
</tr>
<tr>
<td>TDH</td>
<td>All conditions</td>
<td>Variable *</td>
<td>35 ft</td>
</tr>
<tr>
<td>TD</td>
<td>All conditions</td>
<td>Variable *</td>
<td>75 ft</td>
</tr>
<tr>
<td>VPTH</td>
<td>All conditions</td>
<td>Variable *</td>
<td>150 ft</td>
</tr>
</tbody>
</table>

* Safety Height = Rad Alt Reference - (7+1/8xRad Alt Reference)
2) FMS approach function (VGP).

CAUTION
During steep approach without automatic collective control be attentive not to use less than 5% PI.

BC
Back Course Approach Mode. (APP on SAR Guidance Controller)

CAUTION
The course selected for a BC approach must be the ILS approach front course.

GA
Go Around Mode.

Note
This mode can be used, when the IAS is greater than 60 KIAS, to recover the aircraft from an unusual attitude and initiate a rate of climb at 1000 fpm.

ALVL
Autolevel Mode.

CAUTION
In VGP mode, 4 axis FD system only, the ALVL will not activate if the MAP (Missed Approach Point) is lower than 150 ft AGL. When MAP is higher than 150 ft the VGP mode will disengage at the MAP (preceded, at 100 ft above, by a Vertical Track Alert (VTA) caption displayed above the vertical guidance scale on PFD) and a chime is generated.

RHT
Radar Height Hold Mode.

CAUTION
In RHT mode the voice message “Altitude Altitude” is triggered when height exceeds the reference by a value proportional to the reference height.

HOV
Hover/velocity Hold Mode (Enhanced FD system Only)

CAUTION
For FD system not installed with EPIC Software Phase 5, or later, in ALT mode the voice message “Altitude Altitude” is triggered when altitude exceeds the reference altitude by ±150ft. Therefore, if ALT mode is engaged as an alternative to RHT, at a height below 300ft, set DH at a value 10 ft below the reference height in order to have an additional height deviation exceedance cue.
CAUTION

The HOV mode maintains a groundspeed reference therefore pilot must ensure that crosswind and rearwind speed limits are not exceeded. If wind limits are exceeded directional control may not be maintained.

CAUTION

When HOV mode is engaged above 2000ft AGL the ALT mode does not automatically engage. Therefore the pilot must control collective manually or engage ALT mode.

TD/TDH/MOT Transition Down, Transition Down to Hover, Mark On Target (Enhanced FD Phase 5, or later, with SAR Modes only).

Note

When TD, TDH or MOT modes are selected the CAS caution and audio message 'LANDING GEAR' are inhibited.
FMS OPERATION NORMAL PROCEDURES

GENERAL

Normal operating procedures are outlined in the Honeywell Flight Management System (FMS) Pilots Manual for the Agusta AW/AB 139.

Note
For complete FMS operations, refer to the Honeywell Flight Management System (FMS) Pilot Manual for the AW/AB 139.

In the GPS status page (MCDU) RAIM (Receiver Autonomous Integrity Monitor) and FOM (Figure of Merit) are displayed. RAIM and FOM indicate current uncertainty of position expressed in nautical miles. In addition to RAIM for current condition, the GPS receiver predictive RAIM calculation gives the pilot an indication as to whether the GPS geometry will be satisfactory for approach at the selected or expected arrival time. YES indicates RAIM is predicted to be within approach criteria. NO indicates RAIM is predicted to be unacceptable or unavailable.

BASIC OPERATIONS

PRE-DEPARTURE OPERATIONS

At the power-up of the system, NAV IDENT page is presented on MCDU. Basic pre departure operations are:

— Initialize the position by pressing POS INIT key and loading present position (right keys on POSITION INIT page)
— Press FLT PLAN key (6R) to prompt ACTIVE FLT PLAN page and recall or create a FPL
— Press FPL key and activate the flight plan
— Press PERF pushbutton, enter performance data and confirm (CONFIRM INIT key)
— If required select and activate arrival and departure
— If required insert ALTERNATE data and waypoints
— If required press PATTERNS key (on NAV page) to select and activate holdings, flyovers and other patterns.

Note
Above procedures may be monitored on PLAN page of MCDU

IN FLIGHT OPERATIONS

General

ACTIVE FLT PLAN page 1 and PROGRESS page 1 are considered the primary pages of the FMS during flight.

Once activated on the ground, the flight plan may be:

— flown directly by the pilot monitoring MAP page on MFD and LNAV/VNAV (VPATH) presentation on PFD
— flown coupled to FD, LNAV only, once LNAV is presented on PFD and FD is engaged.
Departure, climb and cruise

— Set altitude selector at the reference altitude cleared by ATC
— Monitor leg sequencing on MFD (MAP page) and on the MCDU display.

Descent.

— Check/activate, if required, approach on destination airport and alternate airport on the flight plan
— Set altitude selector at the reference altitude cleared by ATC
— Start descent, once cleared by ATC, at TOD (Top Of Descent) mark using the rate of descent indicated on MCDU display.

A VPATH will be shown during a descent if:
•a vertical constraint is entered or,
•an approach is activated.

VPATH vertical indicator is presented on the PFD in the same spot and with the same layout as the Glideslope indicator. During PRV operation both vertical indicators are concurrently presented, VPATH pointer is presented on the right of the vertical deviation scale and Glideslope on the left. Within the pointers there will be a letter I for ILS or V for VPATH.

WARNING
In VFR flight, the pilot can fly VPATH indication in day VMC only.

— Monitor leg sequencing on MFD (MAP page) and on the MCDU display.

Approach

— Check published approach plate.
— Set altitude selector to the MDA (ASEL)
— Set DH
— Intercepting VPATH, engage IAS and fly the vertical pointer with the collective.

WARNING
The pilot must not fly VPATH indication unless:
— when under ATC control
— flying a published approach
or
— during VMC Day conditions

CAUTION
When the vertical profile includes two consecutive slopes with different angles, a discontinuity in the vertical indicator may be shown at the transition.
Note
If an ILS approach is selected flying a FMS flight plan, PRV mode must be armed and ILS course set.

— Monitor leg sequencing on MFD (MAP page) and on the MCDU display.
— At MDA/DH take over manually for landing.
— If a missed approach is required press the GA button to activate the Missed Approach sequencing.

AUTOPilot COUPLED OPERATIONS WITH FLIGHT DIRECTOR (IF FITTED)

To couple FMS lateral navigation (LNAV) to Flight Director, pilot must:

— Select, on the PFD’s, HIS, FMS1 or FMS2 (by pressing LNAV on DICP);
— Press the NAV key on the Flight Director Guidance Controller.
— Engaging the FD to the FMS:

Course arrow and FMS 1/2 source indicator on PFD’s HSI will turn magenta (from cyan);
— Active leg on MAP page will turn magenta (from cyan).

Note
Vertical Navigation (VNAV) cannot be coupled to FD

Note
ASEL does not capture ALT reference. It can be used only for visual reference. Altitude selector does not influence the vertical navigation but must be initially activated to have NAV vertical presentation.

FMS ADVISORY ANNUNCIATORS

a) Message (MSG)

MSG is an advisory (amber) annunciator that is displayed on the PFD (first line below PI indicator). This annunciator is displayed when a message is shown in the scratchpad. The annunciator is removed after the message has been cleared from the scratchpad.

Messages are displayed in the MCDU scratchpad at various times. They inform or alert the pilot as to system status.

Messages are divided into the following two major groups:

— ADVISORY MESSAGES. Advisory messages contain information that is helpful to the pilot. Advisory messages are usually the result of a pilot action on the MCDU (e.g., making an entry with the incorrect format).
— ALERTING MESSAGES. Alerting messages alert the pilot to the FMS status, assuming the pilot is not looking at the MCDU (e.g., message annunciating, sensor failure).
Messages are stacked for display in priority order on a first in, last out basis. In cases where there are multiple messages stacked, the message annunciator remains displayed until all messages are cleared. Only one message can be cleared per CLR key push.

b) Offset (OFST)

OFST is an advisory (green) annunciator on the PFD (along side way-point identifier). The annunciator is displayed when a lateral offset has been entered on the PROGRESS 3 page. The annunciator is removed or turned off when the offset is removed.

c) Approach (APP)

APP is an advisory (green) annunciator on the PFD (along side way-point identifier). The annunciator indicates the FMS is in the approach mode of operation.

In this mode, the HSI deviation sensitivity and FMS tracking gains are increased. The approach annunciator is displayed if ALL of the following conditions are valid:

— The FMS is the selected aircraft navigation source on PFD.
— A non-precision instrument approach has been activated from the navigation database.
— If no approach, or an ILS, LOC, LOC--BC, LDA, SDF or MLS approach is selected, the APP annunciator does not light.
— The aircraft position is between 2 NM outside the final approach fix (FAF) and the missed approach point (MAP).
— The DGR annunciator must not be present.
— The FMS must be using approved sensors for the selected approach procedure. Approved sensors for non precision approach procedures are described in table below:

<table>
<thead>
<tr>
<th>Approach procedure</th>
<th>Approved Sensors (Navigation Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS/RNAV</td>
<td>GPS: X DME-DME: X VOR/DME: X</td>
</tr>
<tr>
<td>VOR/DME</td>
<td>X X X</td>
</tr>
<tr>
<td>VOR</td>
<td>X X X</td>
</tr>
<tr>
<td>NDB</td>
<td>X X</td>
</tr>
</tbody>
</table>

NOTE: VOR approaches with a procedure specified navaid that does NOT have DME capability can be flown by the FMS only if GPS or DME/ DME is available.
ADVISORY CAPTIONS DEFINITIONS

<table>
<thead>
<tr>
<th>CAS Caption (Green)</th>
<th>System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR COND ON</td>
<td>Air conditioning system switched ON</td>
</tr>
<tr>
<td>AFT VENT ON</td>
<td>Cabin fan switched ON</td>
</tr>
<tr>
<td>FUEL XFEED</td>
<td>Fuel cross feed open</td>
</tr>
<tr>
<td>FWD VENT</td>
<td>Forward vent fan ON</td>
</tr>
<tr>
<td>HEATER ON</td>
<td>Heater switched ON</td>
</tr>
<tr>
<td>LANDING LT ON</td>
<td>LDG LT switched ON</td>
</tr>
<tr>
<td>LDG EMER DOWN</td>
<td>Landing gear lowered using emergency down system</td>
</tr>
<tr>
<td>PARK BRK ON</td>
<td>Park brake ON</td>
</tr>
<tr>
<td>1(2) PITOT HEAT ON</td>
<td>Pitot heating ON</td>
</tr>
<tr>
<td>Rotor brake lever selected to PARK</td>
<td></td>
</tr>
<tr>
<td>SEARCH LT ON</td>
<td>LDG LT2 switched ON</td>
</tr>
<tr>
<td>TQ LIMITER ON</td>
<td>Engine torque limiter ON</td>
</tr>
<tr>
<td>DCL NOT INSTALLED</td>
<td>(Caption present for 5secs) DCL button pressed and function not fitted</td>
</tr>
<tr>
<td>ALTA NOT INSTALLED</td>
<td>(Caption present for 5secs) ALTA button pressed and function not fitted</td>
</tr>
<tr>
<td>RHT NOT INSTALLED</td>
<td>(Caption present for 5secs) RHT button pressed and function not fitted</td>
</tr>
<tr>
<td>HOV NOT INSTALLED</td>
<td>(Caption present for 5secs) HOV button pressed and function not fitted</td>
</tr>
<tr>
<td>MOT NOT INSTALLED</td>
<td>(Caption present for 5secs) MOT button pressed and function not fitted</td>
</tr>
<tr>
<td>TD/H NOT INSTALLED</td>
<td>(Caption present for 5secs) TD/H button pressed and function not fitted</td>
</tr>
<tr>
<td>VNAV NOT INSTALLED</td>
<td>(Caption present for 5secs) VNAV button pressed and function not fitted</td>
</tr>
<tr>
<td>WTR NOT INSTALLED</td>
<td>(Caption present for 5secs) WTR button pressed and function not fitted</td>
</tr>
</tbody>
</table>

CAS Caption (White) System State

| MAINTENANCE | (Caption only active on ground) Informs maintenance crew to interrogate maintenance system. No pilot action. |
CAS Caption (White) System State
NOSE FAN 1(2) OFF
(Caption only active on ground)
Informs crew that associated nose bay vent fan has failed. No pilot action.

150 FT AURAL INHIBIT
Informs crew that the AWG switch is set to REGRADE or INHIBIT.

Note
Caption only active for aircraft modified with kit P/N 4G2350F01511

PFD MESSAGES

PFD Messages
PERFORMANCE

DENSITY ALTITUDE CHART

OUTSIDE AIR TEMPERATURE [°C] vs. DENSITY ALTITUDE [feet]

-50 -40 -30 -20 -10 0 10 20 30 40 50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

-10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000

Take Off, ISA+25°C, ISA+15°C, ISA-25°C, ISA-15°C, ISA and Landing Limit, 0 Hp, 5,500 Hp, 10,000 Hp, 15,000 Hp, ISA-15°C, ISA+25°C, ISA+35°C

Hd PAV FLYAWAY

Rev. 15 Lims-Norm-Perf Page 63
POWER ASSURANCE CHECK in HOVER FLIGHT (NR=100%)

HEATER/COND OFF
GENERATOR LOAD TO MINIMUM (BELOW 17%)

SET NR to 100%

INCREASE COLLECTIVE UNTIL LIGHT ON WHEELS OR HOVERING AT 5 FEET, NOSE ON WIND. DO NOT EXCEED 775°C ITT OR 102.4% NG OR 90% TO...

ENTER CHART AT INDICATED TQ, MOVE DOWN TO INTERSECT PRESSURE ALTITUDE, PROCEED TO THE RIGHT TO INTERSECT OAT,
THEN MOVE UP TO READ VALUES FOR MAXIMUM ALLOWABLE ITT AND NG

IF INDICATED ITT OR NG EXCEEDS MAXIMUM ALLOWABLE, REPEAT CHECK... IF EITHER ENGINE EXCEEDS ALLOWABLE ITT OR NG, PUBLISHED PERFORMANCE MAY NOT BE ACHIEVABLE. REFER TO EMM...
POWER ASSURANCE CHECK in HOVER FLIGHT (NR=102%)

HEATER/COND OFF
GENERATOR LOAD TO MINIMUM (BELOW 17%)
SET NR to 102%
TEST ENGINE MODE SWITCH: FLIGHT
OTHER ENGINE MODE SWITCH: IDLE
INCREASE COLLECTIVE UNTIL LIGHT ON WHEELS OR HOVERING AT 5 FEET. NOSE ON WIND. DO NOT EXCEED 775°C ITT OR 102.4% NG OR 105% TQ
STABILIZE POWER 1 MINUTE. THEN RECORD QAT, PRESSURE ALTITUDE, ENGINE TORQUE, ITT AND NG
ENTER CHART AT INDICATED TQ, MOVE DOWN TO INTERSECT PRESSURE ALTITUDE, PROCEED TO THE RIGHT TO INTERSECT OAT, THEN MOVE UP TO READ VALUES FOR MAXIMUM ALLOWABLE ITT AND NG
IF INDICATED ITT OR NG EXCEEDS MAXIMUM ALLOWABLE, REPEAT CHECK
IF EITHER ENGINE EXCEEDS ALLOWABLE ITT OR NG, PUBLISHED PERFORMANCE MAY NOT BE ACHIEVABLE. REFER TO EMM
HEIGHT LOSS DURING FLYAWAY MANOEUVRE

HEIGHT LOSS AFTER AN ENGINE FAILURE
from Hover

HEIGHT LOSS DURING FLYAWAY MANOEUVRE

GROSS WEIGHT
[kg]

Pressure altitude - [m]

Pressure altitude - [ft]

MAX OAT LIMIT

OAT - [°C]

ISA+35°C

ROTOR SPEED: 100% or 102%

Hd PAV
FLYAWAY

Lims-Norm-Perf Page 66
Rev. 15
<table>
<thead>
<tr>
<th>OAT</th>
<th>-40°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGE Hover ceiling TOP AEO</td>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>14200</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>16300</td>
<td>15200</td>
<td>14000</td>
</tr>
<tr>
<td>Weight 6000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>>18000</td>
<td>17500</td>
<td>17000</td>
<td>15000</td>
<td>13500</td>
<td>11000</td>
</tr>
<tr>
<td>Weight 6400kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>17800</td>
<td>15700</td>
<td>15300</td>
<td>13000</td>
<td>11500</td>
<td>9000</td>
</tr>
<tr>
<td>IGE Hover ceiling MCP AEO</td>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>15200</td>
<td>14200</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>16000</td>
<td>14000</td>
<td>10500</td>
</tr>
<tr>
<td>Weight 6000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>>18000</td>
<td>16400</td>
<td>16000</td>
<td>13000</td>
<td>11000</td>
<td>6000</td>
</tr>
<tr>
<td>Weight 6400kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>16900</td>
<td>14800</td>
<td>14000</td>
<td>11300</td>
<td>8300</td>
<td>1000</td>
</tr>
<tr>
<td>IGE Hover ceiling 2.5 min OEI</td>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>13300</td>
<td>11500</td>
<td>10000</td>
<td>8000</td>
<td>6500</td>
<td>4700</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>11000</td>
<td>9000</td>
<td>7000</td>
<td>5000</td>
<td>3000</td>
<td>1000</td>
</tr>
<tr>
<td>Weight 6000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>9000</td>
<td>7000</td>
<td>4200</td>
<td>2000</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Weight 6400kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>4000</td>
<td>1500</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IGE Hover ceiling MCP OEI</td>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>12000</td>
<td>11000</td>
<td>7700</td>
<td>5000</td>
<td>1450</td>
<td>—</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>9000</td>
<td>8000</td>
<td>4400</td>
<td>1000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Weight 6000 to 6400kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ft Hp)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OAT</td>
<td>-40°C</td>
<td>-20°C</td>
<td>ISA</td>
<td>ISA+15</td>
<td>ISA+25</td>
<td>ISA+35</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>OGE Hover ceiling TOP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>>18000</td>
<td>>18000</td>
<td>>18000</td>
<td>16300</td>
<td>14800</td>
<td>12800</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>18000</td>
<td>16000</td>
<td>16000</td>
<td>13500</td>
<td>11800</td>
<td>9500</td>
</tr>
<tr>
<td>Weight 6000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>16000</td>
<td>14000</td>
<td>13000</td>
<td>10800</td>
<td>9000</td>
<td>6000</td>
</tr>
<tr>
<td>Weight 6400kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>12000</td>
<td>10000</td>
<td>8000</td>
<td>6100</td>
<td>5100</td>
<td>3000</td>
</tr>
<tr>
<td>OGE Hover ceiling MCP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>>18000</td>
<td>17700</td>
<td>17000</td>
<td>14500</td>
<td>12300</td>
<td>7500</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>17000</td>
<td>15000</td>
<td>14000</td>
<td>11500</td>
<td>8500</td>
<td>1000</td>
</tr>
<tr>
<td>Weight 6000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>12000</td>
<td>10000</td>
<td>8000</td>
<td>6000</td>
<td>4500</td>
<td>—</td>
</tr>
<tr>
<td>Weight 6400kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>6000</td>
<td>3700</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OGE Hover ceiling 2.5 min OEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>9800</td>
<td>7700</td>
<td>5250</td>
<td>3000</td>
<td>1350</td>
<td>—</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>5000</td>
<td>2500</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OGE Hover ceiling MCP OEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 5000kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>4000</td>
<td>2000</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Weight 5500kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
RATE OF CLIMB AT 6400 kg AEO

<table>
<thead>
<tr>
<th>OAT</th>
<th>-40°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC @ TOP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude 2000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
</tr>
<tr>
<td>Altitude 5000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>2000</td>
</tr>
<tr>
<td>Altitude 10000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>2100</td>
<td>2100</td>
<td>2000</td>
<td>2000</td>
<td>1700</td>
<td>1400</td>
</tr>
<tr>
<td>Altitude 15000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>2000</td>
<td>1600</td>
<td>1500</td>
<td>1100</td>
<td>800</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OAT</th>
<th>-40°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC @ MCP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude 2000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1200</td>
</tr>
<tr>
<td>Altitude 5000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1700</td>
<td>1100</td>
</tr>
<tr>
<td>Altitude 10000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>1800</td>
<td>1700</td>
<td>1700</td>
<td>1600</td>
<td>1200</td>
<td>800</td>
</tr>
<tr>
<td>Altitude 15000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>1600</td>
<td>1400</td>
<td>1300</td>
<td>800</td>
<td>400</td>
<td>—</td>
</tr>
</tbody>
</table>

RATE OF CLIMB AT 6400 kg OEI

<table>
<thead>
<tr>
<th>OAT</th>
<th>-40°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC @ 2.5min OEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude 2000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1000</td>
<td>900</td>
<td>700</td>
</tr>
<tr>
<td>Altitude 5000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>1100</td>
<td>1100</td>
<td>1000</td>
<td>800</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>Altitude 10000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>900</td>
<td>700</td>
<td>500</td>
<td>300</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Altitude 15000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>200</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OAT</th>
<th>-40°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC @ MCP OEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude 2000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>600</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>Altitude 5000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>400</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Altitude 10000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>700</td>
<td>500</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Altitude 15000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OAT</td>
<td>-40°C</td>
<td>-20°C</td>
<td>ISA</td>
<td>ISA+15</td>
<td>ISA+25</td>
<td>ISA+35</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>320 (705)</td>
<td>327 (720)</td>
<td>336 (740)</td>
<td>339 (748)</td>
<td>342 (753)</td>
<td>345 (761)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>348 (768)</td>
<td>355 (783)</td>
<td>368 (812)</td>
<td>377 (832)</td>
<td>383 (842)</td>
<td>390 (861)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>413 (910)</td>
<td>427 (942)</td>
<td>457 (1007)</td>
<td>474 (1045)</td>
<td>485 (1070)</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>310 (682)</td>
<td>315 (695)</td>
<td>322 (709)</td>
<td>326 (719)</td>
<td>331 (730)</td>
<td>336 (741)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>338 (744)</td>
<td>344 (758)</td>
<td>361 (795)</td>
<td>371 (817)</td>
<td>379 (869)</td>
<td>388 (854)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>408 (899)</td>
<td>424 (934)</td>
<td>458 (1009)</td>
<td>477 (1052)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>289 (636)</td>
<td>293 (647)</td>
<td>303 (669)</td>
<td>311 (686)</td>
<td>318 (701)</td>
<td>324 (715)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>321 (708)</td>
<td>335 (738)</td>
<td>352 (776)</td>
<td>367 (808)</td>
<td>383 (844)</td>
<td>401 (883)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>417 (919)</td>
<td>446 (982)</td>
<td>480 (1059)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>274 (603)</td>
<td>286 (630)</td>
<td>294 (647)</td>
<td>306 (674)</td>
<td>317 (699)</td>
<td>337 (744)</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>323 (712)</td>
<td>351 (774)</td>
<td>374 (825)</td>
<td>407 (897)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>468 (1032)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hover Ceiling

Rate of Climb at 6800 kg AEO (if applicable)

<table>
<thead>
<tr>
<th>OAT</th>
<th>-30°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGE Hover ceiling TOP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 6800kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>>8000</td>
<td>>8000</td>
<td>>8000</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IGE Hover ceiling MCP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 6800kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>>8000</td>
<td>>8000</td>
<td>>8000</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OGE Hover ceiling TOP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 6800kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft Hp</td>
<td>5600</td>
<td>4500</td>
<td>1500</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OGE Hover ceiling MCP AEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight 6800kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rate of Climb at 6800 kg OEI (if applicable)

<table>
<thead>
<tr>
<th>OAT</th>
<th>-30°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC @ 2.5min OEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude 2000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>950</td>
<td>950</td>
<td>950</td>
<td>900</td>
<td>700</td>
<td>520</td>
</tr>
<tr>
<td>Altitude 5000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>950</td>
<td>950</td>
<td>800</td>
<td>620</td>
<td>450</td>
<td>300</td>
</tr>
<tr>
<td>Altitude 8000 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>860</td>
<td>740</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
FUEL CONSUMPTION AT 6800 kg (if applicable)

<table>
<thead>
<tr>
<th>OAT</th>
<th>-30°C</th>
<th>-20°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude 2000ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>620</td>
<td>620</td>
<td>600</td>
<td>520</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>Altitude 5000ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>620</td>
<td>620</td>
<td>550</td>
<td>510</td>
<td>110</td>
<td>-120</td>
</tr>
<tr>
<td>Altitude 8000ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft/min</td>
<td>600</td>
<td>530</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

FUEL CONSUMPTION AT 6800 kg

<table>
<thead>
<tr>
<th>OAT</th>
<th>-20°C</th>
<th>0°C</th>
<th>ISA</th>
<th>ISA+15</th>
<th>ISA+25</th>
<th>ISA+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>336</td>
<td>336</td>
<td>340</td>
<td>348</td>
<td>353</td>
<td>358</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(740)</td>
<td>(740)</td>
<td>(750)</td>
<td>(767)</td>
<td>(778)</td>
<td>(789)</td>
</tr>
<tr>
<td>2000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>360</td>
<td>366</td>
<td>373</td>
<td>386</td>
<td>395</td>
<td>400</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(794)</td>
<td>(740)</td>
<td>(822)</td>
<td>(851)</td>
<td>(871)</td>
<td>(882)</td>
</tr>
<tr>
<td>2000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>428</td>
<td>456</td>
<td>467</td>
<td>480</td>
<td>492</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(943)</td>
<td>(1005)</td>
<td>(1030)</td>
<td>(1058)</td>
<td>(1085)</td>
<td>—</td>
</tr>
<tr>
<td>4000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>320</td>
<td>330</td>
<td>333</td>
<td>338</td>
<td>344</td>
<td>349</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(706)</td>
<td>(728)</td>
<td>(734)</td>
<td>(745)</td>
<td>(758)</td>
<td>(769)</td>
</tr>
<tr>
<td>4000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>350</td>
<td>362</td>
<td>368</td>
<td>380</td>
<td>392</td>
<td>400</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(772)</td>
<td>(791)</td>
<td>(811)</td>
<td>(838)</td>
<td>(864)</td>
<td>(886)</td>
</tr>
<tr>
<td>4000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>436</td>
<td>462</td>
<td>472</td>
<td>490</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(961)</td>
<td>(1019)</td>
<td>(1041)</td>
<td>(1080)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8000ft @ 90 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>303</td>
<td>315</td>
<td>315</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(668)</td>
<td>(695)</td>
<td>(695)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8000ft @ 120 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>346</td>
<td>370</td>
<td>370</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(763)</td>
<td>(816)</td>
<td>(816)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8000ft @ 150 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/hr</td>
<td>468</td>
<td>480</td>
<td>480</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(lb/hr)</td>
<td>(1032)</td>
<td>(1058)</td>
<td>(1058)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LIST OF WARNING MESSAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE & DRIVE SHAFT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY SHUT DOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRE & SMOKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING GEAR STATIC PORT OBSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor & Transmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF CAUTION MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Flight Control System</td>
</tr>
<tr>
<td>Avionic Systems</td>
</tr>
<tr>
<td>Electrical</td>
</tr>
<tr>
<td>Engine</td>
</tr>
<tr>
<td>Engine in Flight Restart</td>
</tr>
<tr>
<td>Fuel System</td>
</tr>
<tr>
<td>Hydraulic System</td>
</tr>
<tr>
<td>Landing Gear</td>
</tr>
<tr>
<td>Miscellaneous Systems</td>
</tr>
<tr>
<td>PFD/MFD Messages</td>
</tr>
<tr>
<td>Rotor & Transmission</td>
</tr>
<tr>
<td>Cat A/B and In Flight Procedures for Engine Failure</td>
</tr>
</tbody>
</table>

NOTES
GENERAL

This section contains the procedures that should be performed in the event of an emergency or malfunction. The procedures used for each actual emergency or malfunction must result from consideration of the overall situation. Multiple emergencies or malfunctions may require a departure from normal corrective procedures detailed in this section and is at the discretion of the pilot.

The emergencies and malfunctions procedures are presented either as a procedural list of actions or in the form of flow charts.

The flow charts are based on cockpit indications that would be available to the pilot, a brief description of the emergency / malfunction, and the subsequent actions required by the pilot.

For some types of emergency / malfunction the flow charts give the pilot differing procedures depending on certain criteria. The correct procedure to follow can be defined by the flight condition, such as ‘On ground’ or ‘In flight’, by a Yes/No answer to certain questions, such as ‘Does smoke clear?’, or by ‘If’ statements to identify more precisely the exact condition encountered which will dictate the correct procedure to follow on the flow chart.

The necessary pilot actions in the procedures commence with a dash ‘-’ and are typed in bold text to make them more conspicuous.

USE OF WARNINGS, CAUTIONS AND NOTES

Warnings, Cautions and Notes are used to emphasize important and critical instructions and are used as follows:

WARNING

An operating procedure, practice, etc., which, if not correctly followed, could result in personal injury or loss of life.

CAUTION

An operating procedure, practice, etc., which, if not strictly observed, could result in damage to, or destruction of, equipment.

Note

An operating procedure, condition, etc., which is essential to highlight.

DEFINITIONS

The level of alertness required by the pilots is a function of the flight regime. The following definitions are used in the manual;

Fly Attentive - Pilot to maintain close control of flight path using hands on when required.

Fly Manually - Pilot to control directly the flight path using hands on.
EMERGENCY PROCEDURES

CAS WARNING SYSTEM (WARNING MSGS) 9
 VOICE WARNING MESSAGES AND PRIORITIES LOGIC 9
 VOICE ONLY MESSAGES .. 9
 TABLE OF CAS WARNING MESSAGES 9
 SAFE OEI FLIGHT ... 10
 EMERGENCY LANDING GUIDANCE 10

ELECTRICAL SYSTEM (ELEC) .. 11
 DOUBLE DC GENERATOR FAILURE 11
 EXTENDED FLIGHT ENDURANCE AFTER DOUBLE DC GENERATOR FAILURE .. 12
 DC GENERATOR FAILURE .. 12
 SERVICES LOST DURING BUS FAILURES 13
 SERVICES AVAILABLE ON ESSENTIAL BUS 1 AND 2 14
 MAIN AND AUXILIARY BATTERY HOT 14

ENGINE FAILURE (ENG FAIL SHT DWN) 15
 ENGINE OUT ... 15
 ENGINE DRIVE SHAFT FAILURE 16
 ENGINE IDLE ... 16
 DOUBLE ENGINE FAILURE .. 17
 AUTOROTATION ENTRY AND LANDING PROCEDURE 17
 SINGLE ENGINE FAILURE IN HOVER 18
 FLYAWAY PROCEDURE .. 18
 ENGINE OIL PRESSURE LOW .. 19
 ENGINE EEC FAIL ... 19

ENGINE SHUTDOWN IN EMERGENCY (ENG FAIL SHT DWN) 20

EMERGENCY/POST CRASH SHUTDOWN (ENG FAIL SHT DWN) 20

FIRE (FIRE) ... 21
 ENGINE BAY FIRE (GROUND) 21
 ENGINE BAY FIRE (FLIGHT) .. 22
 ENGINE EXHAUST FIRE AFTER SHUTDOWN 22
 BAGGAGE BAY FIRE .. 23
 COCKPIT / CABIN FIRE (GROUND) 23
 COCKPIT / CABIN FIRE (FLIGHT) 24
 ELECTRICAL FIRE/SMOKE (GROUND) 24
 ELECTRICAL FIRE/SMOKE (FLIGHT) 24
 WHEEL BRAKE FIRE .. 26

LANDING GEAR (LDG GR STC PRT) .. 27
 LANDING GEAR FAILS TO LOCK DOWN 27

STATIC PORT OBSTRUCTION (LDG GR STC PRT) 28

ROTOR UNDER-SPEED (ROTOR XMSN) 29

ROTOR-OVERSPEED (ROTOR XMSN) 29

TRANSMISSION SYSTEM FAILURES (ROTOR XMSN) 30
 MAIN GEARBOX OIL PRESSURE LOW 30
MALFUNCTION PROCEDURES

CAS CAUTION SYSTEM (CAUTION MSGS)
- Cautions with Voice Messages
- Table of CAS Caution Messages
- Table of PFD and MFD Messages

Automatic Flight Control System (AFCS)
- Autopilot Fail
- Autopilot Off
- Autopilot Axis Off
- Autopilot Axis Disengage
- Attitude System Off
- AFCS Trim Failure
- Pitch, Roll, Yaw Trim Fail
- Mistrim
- AFCS Degraded
- SAS Degraded
- AP Test Abort
- Cyclic Force Trim Off or Fail
- Cyclic Force Trim Release Failure
- Collective Force Trim Off or Fail
- Collective Force Trim Release Failure
- AFCS Quick Disconnect Procedure
- Guidance Control Panel Failure
- Single Collective Autopilot Failure
- Dual Collective Autopilot Failure
- MAU Failure with FD Engaged

Avionic Systems (Avionic)
- Primary or/and Multifunctional Flight Display Unit Failure
- Display Unit Overheating
- Display Unit Degraded
- ADS Failure
- AHRS Failure
- Aural Warning System Failure
- Avionic Fault
- Modular Avionics Unit Overheat/FAIL
- Modular Avionics Unit Overheat/FAIL (Cont)
- Multifunction Control Display Unit Overheating
- System Configuration Failure
- Validate Configuration
- Flight Data Recorder Failure
- Cockpit Voice Recorder Failure
- Flight Management System Failure
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS FAILURE</td>
<td>47</td>
</tr>
<tr>
<td>FMS/GPS MISCOMPARE</td>
<td>47</td>
</tr>
<tr>
<td>FMS/GPS MISCOMPARE UNAVAILABLE</td>
<td>48</td>
</tr>
<tr>
<td>COMMUNICATION SYSTEM (AVIONIC)</td>
<td>48</td>
</tr>
<tr>
<td>VHF OVERHEAT</td>
<td>48</td>
</tr>
<tr>
<td>AUDIO PANEL FAILURE</td>
<td>48</td>
</tr>
<tr>
<td>MRC OVERHEAT</td>
<td>48</td>
</tr>
<tr>
<td>ELECTRICAL (ELEC)</td>
<td>49</td>
</tr>
<tr>
<td>SINGLE DC GENERATOR FAILURE</td>
<td>49</td>
</tr>
<tr>
<td>DC GENERATOR OVERHEAT</td>
<td>49</td>
</tr>
<tr>
<td>DC GENERATOR OVERLOAD</td>
<td>50</td>
</tr>
<tr>
<td>MAIN BATTERY OFF</td>
<td>50</td>
</tr>
<tr>
<td>AUXILIARY BATTERY OFF</td>
<td>50</td>
</tr>
<tr>
<td>LOSS OF MAIN AND/OR AUXILIARY BATTERY SUPPLY</td>
<td>51</td>
</tr>
<tr>
<td>BUS TIE OPEN</td>
<td>51</td>
</tr>
<tr>
<td>DC MAIN BUS FAILURE</td>
<td>52</td>
</tr>
<tr>
<td>ENGINE MALFUNCTIONS (ENG)</td>
<td>53</td>
</tr>
<tr>
<td>COMPRESSOR STALL</td>
<td>53</td>
</tr>
<tr>
<td>UNUSUAL ENGINE NOISE</td>
<td>53</td>
</tr>
<tr>
<td>ENGINE LIMIT EXCEEDANCE</td>
<td>54</td>
</tr>
<tr>
<td>ENGINE OIL TEMPERATURE</td>
<td>54</td>
</tr>
<tr>
<td>ENGINE OIL PRESSURE HIGH</td>
<td>55</td>
</tr>
<tr>
<td>ENGINE OIL CHIP DETECTOR</td>
<td>55</td>
</tr>
<tr>
<td>ENGINE FIRE DETECTOR SYSTEM</td>
<td>56</td>
</tr>
<tr>
<td>ENGINE CONTROL LEVER</td>
<td>57</td>
</tr>
<tr>
<td>ENGINE CONTROL LEVER POSITION</td>
<td>57</td>
</tr>
<tr>
<td>ENGINE MODE SELECT SWITCH</td>
<td>57</td>
</tr>
<tr>
<td>ENGINE POWER TURBINE OVERSPEED</td>
<td>58</td>
</tr>
<tr>
<td>ENGINE ELECTRONIC CONTROL DATA</td>
<td>58</td>
</tr>
<tr>
<td>DEGRADATION OF ENGINE CONTROL FUNCTIONS</td>
<td>59</td>
</tr>
<tr>
<td>ENGINE HOT START</td>
<td>59</td>
</tr>
<tr>
<td>TORQUE LIMITER</td>
<td>59</td>
</tr>
<tr>
<td>INTER TURBINE TEMPERATURE LIMITER</td>
<td>60</td>
</tr>
<tr>
<td>ENGINE POWER TURBINE OVERSPEED DETECT FAILURE</td>
<td>60</td>
</tr>
<tr>
<td>FUEL FILTER BY-PASS</td>
<td>60</td>
</tr>
<tr>
<td>FUEL ICING</td>
<td>61</td>
</tr>
<tr>
<td>FUEL HEATER</td>
<td>61</td>
</tr>
<tr>
<td>ENGINE AND ROTOR PARAMETERS MISCOMPARE</td>
<td>62</td>
</tr>
<tr>
<td>ENGINE ANALOGUE SENSOR FAILURE</td>
<td>62</td>
</tr>
<tr>
<td>ENGINE IN FLIGHT RESTART PROCEDURE (ENG FLT RESTART)</td>
<td>63</td>
</tr>
<tr>
<td>ENGINE MANUAL STARTING (ENG FLT RESTART)</td>
<td>64</td>
</tr>
<tr>
<td>ENGINE MANUAL STARTING ON GROUND PROCEDURE</td>
<td>64a</td>
</tr>
<tr>
<td>ENGINE MANUAL IN FLIGHT RESTART PROCEDURE</td>
<td>64b</td>
</tr>
<tr>
<td>FUEL SYSTEM (FUEL)</td>
<td>65</td>
</tr>
<tr>
<td>FUEL LOW</td>
<td>65</td>
</tr>
<tr>
<td>FUEL PRESSURE LOW</td>
<td>65</td>
</tr>
</tbody>
</table>
DOUBLE FUEL PUMP FAILURE 66
FUEL CONTENTS GAUGING UNIT FAILURE 66
FUEL LOW SENSOR FAILURE 67
FUEL PROBE FAILURE 67
FUEL CONTENTS GAUGING UNIT TEST SYSTEM FAILURE 68
ABNORMAL FUEL CONSUMPTION 68

HYDRAULIC SYSTEM (HYD LDG GR) 69
HYDRAULIC PRESSURE LOW 69
NORMAL LANDING GEAR PRESSURE LOW 69
EMERGENCY LANDING GEAR PRESSURE LOW 70
HYDRAULIC FLUID OVERHEATING 70
HYDRAULIC FLUID LEVEL LOW 71
HYDRAULIC PUMP 1, 2 OR 4 FAILURE 71
MAIN VALVE SEIZURE IN MAIN OR TAIL ROTOR SERVO 72
NOSEWHEEL UNLOCKED (IN FLIGHT) 72
PARK BRAKE MALFUNCTION 73
PARK BRAKE ON IN FLIGHT 73
LANDING GEAR RETRACTED 73
LANDING GEAR FAILS TO RAISE 74

MISCELLANEOUS SYSTEMS (MISC) 75
PITOT HEATER FAILURE 75
PITOT HEATER OFF 75
AIRCRAFT NEVER EXCEED SPEED 75
AIRCRAFT NEVER EXCEED SPEED MISCOMPARE 75
WEIGHT ON WHEELS SWITCH FAILURE 76
COCKPIT DOOR OPEN 76
CABIN DOOR OPEN 77
BAGGAGE BAY DOOR OPEN 77
EXTERNAL POWER SOCKET DOOR OPEN 77
VENT FAN FAILURE 78
NOSE AVIONIC FANS FAILURE 78
ROTOR BRAKE FAIL 78
HEATER FAILURE 78a
COND FAILURE 78a

PFD AND MFD DISPLAY MESSAGES (PFD/MFD MSGS) 79
ATTITUDE DISPLAY FAILURE 79
HEADING DISPLAY FAILURE 79
ADS FAILURE 80
CAS WARNING AND CAUTION MESSAGE LIST DISCREPANCY 81
MAU MESSAGE ON PFD 82
DISPLAY UNIT GRAPHIC MALFUNCTION 83
2.5 MINUTE RATING MESSAGE ON PFD 84
DECISION HEIGHT CAPTION 84
AHRS MISCOMPARE 85
ADS MISCOMPARE 85
NAV MISCOMPARE 85
FLIGHT DIRECTOR FAILURE 86
SINGLE FLIGHT DIRECTOR FAILURE ... 86
DUAL FLIGHT DIRECTOR FAILURE ... 86
SINGLE RAD ALT FAILURE WITH RHT ENGAGED 86
DOUBLE RAD ALT FAILURE WITH RHT ENGAGED 86a
RAD ALT MISCOMPARE .. 86a
VERTICAL TRACK ALERT CAPTION 86b
GROUNDSPEED VELOCITY FAIL ... 86b
GROUNDSPEED VELOCITY MISCOMPARE 86b
HEIGHT LIMIT CAPTION .. 86c
OAT SENSOR MISCOMPARE .. 86c
FMS MESSAGES (PFD/MFD MSGS) .. 86d
DEAD RECKONING (DR) ... 86d
DEGRADED (DGR) .. 86d
UNABLE RNP ... 86d

ROTOR AND TRANSMISSION (ROTOR XMSN) 87
ROTOR SPEED SELECTOR ... 87
MAIN GEARBOX OVERTORQUE ... 87
MAIN GEARBOX CHIP DETECTOR .. 88
MAIN GEARBOX OIL FILTER .. 88
MAIN GEARBOX OIL LOW ... 88
MAIN GEARBOX INPUT BEARING TEMPERATURE 89
MAIN GEARBOX INPUT OIL PRESSURE 89
INTERMEDIATE OR TAIL GEARBOX CHIP 90
INTERMEDIATE OR TAIL GEARBOX OIL LOW 90
INTERMEDIATE GEARBOX OIL TEMPERATURE HIGH 90
TAIL ROTOR GEARBOX OIL TEMPERATURE HIGH 91
GEARBOX CHIP DETECT UNIT MALFUNCTION 91
GEARBOX CHIP DETECTOR SENSOR FAILURE 91

CAT B SINGLE ENGINE FAILURE PROCEDURES
(CAT A/B PROCS) .. 93
CATEGORY B SINGLE ENGINE FAILURE IN HOVER (5 TO 10 FT) 93
CATEGORY B SINGLE ENGINE FAILURE ON TAKE OFF 93
SINGLE ENGINE FAILURE DURING CRUISE 93
SINGLE ENGINE LANDING CATEGORY B 93

CAT A SINGLE ENGINE FAILURE PROCEDURES
(CAT A/B PROCS) .. 94
IN HOVER (5 FEET ATS) ALL PROCEDURES 94
VERTICAL PROCEDURE RTO ... 94
SHORT FIELD PROCEDURE RTO 94
BACK UP PROCEDURE RTO ... 95
CLEAR AREA PROCEDURE RTO .. 95
CONFINED AREA PROCEDURE RTO 95
VERTICAL, SHORT FIELD AND BACK UP PROCEDURES CTO 96
CLEAR AREA CTO .. 96a
CONFINED AREA CTO .. 96a
OFFSHORE HELIPAD CTO ... 96b
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE ENGINE FAILURE DURING CRUISE</td>
<td>96b</td>
</tr>
<tr>
<td>HELIPORT BALKED LANDING</td>
<td>97</td>
</tr>
<tr>
<td>CLEAR AREA BALKED LANDING</td>
<td>97</td>
</tr>
<tr>
<td>CONFINED AREA BALKED LANDING</td>
<td>98</td>
</tr>
<tr>
<td>OFFSHORE HELIDECK BALKED LANDING</td>
<td>98</td>
</tr>
<tr>
<td>HELIPORT OEI LANDING</td>
<td>99</td>
</tr>
<tr>
<td>CLEAR AREA OEI LANDING</td>
<td>99</td>
</tr>
<tr>
<td>CONFINED AREA OEI LANDING</td>
<td>99</td>
</tr>
<tr>
<td>OFFSHORE HELIDECK OEI LANDING</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE OF CAS WARNING MESSAGES

<table>
<thead>
<tr>
<th>CAS caption</th>
<th>Voice Warning</th>
<th>Audio</th>
<th>Failure/System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Low</td>
<td>Tone</td>
<td>Power ON: NR below 98% (AEO), or below 90% (OEI), Power OFF: NR below 95%</td>
<td></td>
</tr>
<tr>
<td>(2) ENG Out</td>
<td>Tone</td>
<td>Engine NG below 34.3% or NG rate of change outside limits.</td>
<td></td>
</tr>
<tr>
<td>(2) ENG Fire</td>
<td>Tone</td>
<td>Engine bay high temperature, fire or hot gas leak</td>
<td></td>
</tr>
<tr>
<td>Rotor High</td>
<td>Tone</td>
<td>Power ON: NR above 104%, Power OFF: NR above 110%</td>
<td></td>
</tr>
<tr>
<td>(2) ENG Idle</td>
<td>Tone</td>
<td>Engine in IDLE and collective being raised, (Triggered on ground)</td>
<td></td>
</tr>
<tr>
<td>(2) EEC Fail</td>
<td>None</td>
<td>Automatic reversion of associated engine to manual mode</td>
<td></td>
</tr>
<tr>
<td>MGB Oil Press</td>
<td>None</td>
<td>Low pressure in MGB lubricating systems (less than 3.1 bar)</td>
<td></td>
</tr>
<tr>
<td>MGB Oil Temp</td>
<td>None</td>
<td>Overheating of MGB lubricating system (greater than 109°C)</td>
<td></td>
</tr>
<tr>
<td>(2) ENG Oil Press</td>
<td>None</td>
<td>Low oil pressure in associated engine (less than 4.2 bar)</td>
<td></td>
</tr>
<tr>
<td>1-2 DC Gen</td>
<td>None</td>
<td>Failure of both generators</td>
<td></td>
</tr>
<tr>
<td>Main Batt Hot</td>
<td>None</td>
<td>Main battery overheating</td>
<td></td>
</tr>
<tr>
<td>Aux Batt Hot</td>
<td>None</td>
<td>Auxiliary battery overheating</td>
<td></td>
</tr>
<tr>
<td>Bag Fire</td>
<td>None</td>
<td>Smoke detected in baggage bay</td>
<td></td>
</tr>
</tbody>
</table>
VOICE ONLY MESSAGES

1. “Airspeed” — Vne speed exceeded.
2. “150 Feet” — Aircraft at less than 150ft RAD ALT height
3. “Autopilot” — Associated with any AP caution message
4. “Altitude” — Altitude deviation in ALT or RHT mode exceeded
5. “Check Height” — Aircraft at or below selected RAD ALT DH height (EPIC Software Phase 5, or later)
6. “Low Speed” — Aircraft below 55 KIAS and FD has automatically disengaged (EPIC Software Phase 5, or later)

SAFE OEI FLIGHT

In general safe OEI flight is defined to mean (1) a sustainable airspeed of not less than 50 KIAS, (2) the ability to obtain a positive rate of climb at acceptable power levels and (3) an altitude which provides sufficient clearance from the ground/obstacles so that required manoeuvring can be reasonably achieved. At crew discretion, other procedural checks/actions may be carried out while these conditions are being established.

EMERGENCY LANDING GUIDANCE

Throughout this Section, three terms are used to indicate the degree of urgency with which a landing must be effected. In cases where extremely hazardous landing conditions exist such as dense bush, heavy seas or mountainous terrain, the final decision as to the urgency of landing must be made by the pilot.

1. Land immediately: — Land at once, even if for example this means ditching or landing in trees. The consequences of continued flight are likely to be more hazardous than those of landing at a site normally considered unsuitable.

2. Land as soon as possible: — Do not continue flight for longer than is necessary to achieve a safe and unhurried landing at the nearest site.

3. Land as soon as practicable: — Land at the nearest aviation location or, if there is none reasonably close, at a safe landing site selected for subsequent convenience.
DOUBLE DC GENERATOR FAILURE

1-2 DC GEN + Voice Warning
Double DC Generator failure
- Select both DC generator switches to OFF
- Select one DC generator switch to ON

1-2 DC GEN caption clears
1(2) DC GEN caption illuminates
DC generator back on line,
Assume other DC Generator
has failed, leave OFF
Loss of NON ESS BUS 1&2
- Set avionic equipment as
required, (see NOTE 1) monitor
DC load and regulate electrical
power usage to stay within limits
- Continue flight

NOTE 1
See page 13 for services lost
when BUS not available.

NOTE 2
If MAIN BUS 1 required, the BATTERY MAIN
switch may be switched ON to supply battery
power to MAIN BUS 1 reducing the battery
endurance to a maximum of 17 minutes.
If the BUS TIE is switched ON the BATTERY
power is also supplied to MAIN BUS 2, with
a further reduction in battery endurance.

NOTE 3
After double DC GEN failure and with
BATTERY MAIN OFF do not use ELEC
and HYD synoptic pages

CAUTION
The following action will
cause loss of MAIN BUS
1 & 2 and NON ESS BUS
1 & 2. See NOTE 1

- BATTERY MAIN, switch
OFF to conserve battery
power (See NOTE 2 & 3)
- Land as soon as possible
(within 30 minutes) or
refer to Extended Flight
Endurance page 12

- Right pilot select on-side
radio/com (N°2)
- DC Generator failed,
- Switch OFF
- Select other DC
Generator ON

1-2 DC GEN caption remains

Double DC generator
failure confirmed
(within 30 minutes) or
caption clears
DC generator back on line,
Assume other DC Generator
has failed, leave OFF
Loss of NON ESS BUS 1&2
- Set avionic equipment as
required, (see NOTE 1) monitor
DC load and regulate electrical
power usage to stay within limits
- Continue flight

1-2 DC GEN

1(2) DC GEN

1-2 DC GEN

1-2 DC GEN
EXTENDED FLIGHT ENDURANCE AFTER DOUBLE DC GENERATOR FAILURE

The following assumes the double DC Generator Failure procedure has been followed and a double DC generator failure is confirmed.

1-2 DC GEN

- Double DC generator failure confirmed
- Confirm BATTERY MAIN switch OFF
- Select FUEL XFEED CLOSED
- FUEL PUMP 1 and 2 switches OFF
- On RCP, select PLT switch to PFD ONLY

If night flight
If OAT less than 4°C
- Confirm PITOT HEATER 2 ON
- Land as soon as practicable within 57 minutes

If OAT greater than 4°C
- Confirm LT panel switches OFF
- Confirm POSITION LIGHTS OFF

If day flight
If OAT less than 4°C
- Confirm PITOT HEATER OFF
- Land as soon as practicable within 62 minutes

If OAT greater than 4°C
- Confirm PITOT HEATER 2 ON
- Land as soon as practicable within 66 minutes

Note
The battery endurance reported above assumes the pilot operates the VHF2 radio system in transmission for a maximum of 1 minute every 15 minutes.

Note
The LDG LT can be turned on for 3 minutes before landing.
DC MAIN BUS 1

- ADM 1
- ANTI-COLL LIGHT
- CARGO HOOK RELEASE
- CLOCK CPLT
- COCKPIT CPLT LIGHT
- CPLT ICS
 - (CPLT ICS in back up mode)
- CPLT PFD
- CSL ILLUM
- FD1
- HOIST POWER
- HOIST CUTTER 1
- HOIST CONTROL
- HUMS
- HYD ELEC PUMP
- LINEAR ACTUATOR 1
- MAU1 (PRI POWER)
- MCDU PLT
- MRC 1 (NIM 1, NAV 1)
- OVHD PANEL ILLUM
- PA
- PFD CPLT CONTROL
- PITOT 1 FAIL INDICATION
- PITOT HEAT 1
- RAD ALT 1
- UTIL POWER
- W/RADAR
- XMSN OIL LEVEL SENSOR

DC MAIN BUS 2

- AUTO TRIM
- BAGGAGE COMPT LIGHT
- CABIN LIGHT
- COCKPIT/COCKPIT LIGHT
- COCKPIT VENT (PLT)
- CPLT MFD
- DOME LIGHT
- FD2
- HOIST LIGHT
- MAU 1 (AUX POWER)
- MCDU CPLT
- MRC 2 (ADF & DME)
- PLT W/WIPER
- PSU
- RAD ALT 2
- SEARCH LIGHT CONTROL
- SEARCH LIGHT POWER
- STORM LIGHT
- SUN LIGHT CONTROL
- VENT CONTROL 2
- V/UHF

DC NON ESS BUS 1

- CABIN VENT
- COCKPIT VENT (CPLT)
- CPLT W/WIPE
- ECS (COCKPIT)
- FUEL DRAIN VALVE
- STEP LIGHT

DC NON ESS BUS 2

- ECS (CABIN)
- EXT/SPKR POWER
MAIN AND AUXILIARY BATTERY HOT

MAIN BATT HOT

- Voice Warning

Main battery temperature exceeding limits

- Switch BATTERY MAIN OFF
- Continue Flight

AUX BATT HOT

- Voice Warning

Auxiliary battery temperature exceeding limits

- Switch BATTERY AUX OFF
- Continue flight

AUX-MAIN BATT HOT

- Voice Warning

Auxiliary and Main battery temperature exceeding limits

- Switch BATTERY AUX OFF, Switch BATTERY MAIN OFF
- Continue flight

Services available on ESSENTIAL BUS 1 AND 2

DC ESS BUS 1

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAGGAGE FIRE DETECT</td>
</tr>
<tr>
<td>BUS CONTROL 1</td>
</tr>
<tr>
<td>EAPS 1</td>
</tr>
<tr>
<td>EEC 1</td>
</tr>
<tr>
<td>EEC 1 FAIL INDICATION</td>
</tr>
<tr>
<td>EMERG LIGHT</td>
</tr>
<tr>
<td>EMERG FLOAT CONTROL (MANUAL)</td>
</tr>
<tr>
<td>EMERG FLOAT POWER</td>
</tr>
<tr>
<td>ENG 1 FIRE DETECTION</td>
</tr>
<tr>
<td>ENG 1 FIRE EXTINGUISHER</td>
</tr>
<tr>
<td>ENG 1 IGNITER & START</td>
</tr>
<tr>
<td>FCU 1</td>
</tr>
<tr>
<td>FDR/CVR</td>
</tr>
<tr>
<td>FUEL PUMP 1</td>
</tr>
<tr>
<td>FUEL SHUT OFF VALVE 1</td>
</tr>
<tr>
<td>FORCE TRIM</td>
</tr>
<tr>
<td>GCU 2</td>
</tr>
<tr>
<td>ENG GOV CONTROL</td>
</tr>
<tr>
<td>HYD SYS 1 & SOV 1&2</td>
</tr>
<tr>
<td>ICS PLT (PLT ICS IN BKUP MODE)</td>
</tr>
<tr>
<td>LANDING LIGHT CONTROL</td>
</tr>
<tr>
<td>LANDING LIGHT POWER</td>
</tr>
<tr>
<td>LGD GEAR CONTROL</td>
</tr>
<tr>
<td>LGD GEAR INDICATION</td>
</tr>
<tr>
<td>MAIN BATT CHARGE</td>
</tr>
<tr>
<td>MAU 2 (PRI POWER)</td>
</tr>
<tr>
<td>MRC 1 (VHF 1)</td>
</tr>
<tr>
<td>MRC 2 (XPDR)</td>
</tr>
<tr>
<td>NLG STEERING LOCK</td>
</tr>
<tr>
<td>PLT MFD</td>
</tr>
<tr>
<td>STBY 1 ATT</td>
</tr>
<tr>
<td>TAIL POS LIGHT</td>
</tr>
<tr>
<td>TRANS CHIP BURNER</td>
</tr>
</tbody>
</table>

DC ESS BUS 2

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM 2</td>
</tr>
<tr>
<td>AUTO FLOAT CONTROL</td>
</tr>
<tr>
<td>AUX BATT CHARGE</td>
</tr>
<tr>
<td>BUS CONTROL 2</td>
</tr>
<tr>
<td>CARGO HOOK EMERG RELEASE</td>
</tr>
<tr>
<td>CLOCK PLT</td>
</tr>
<tr>
<td>COCKPIT PLT LIGHT</td>
</tr>
<tr>
<td>EAPS 2</td>
</tr>
<tr>
<td>EEC2</td>
</tr>
<tr>
<td>EEC 2 FAIL INDICATION</td>
</tr>
<tr>
<td>ELT</td>
</tr>
<tr>
<td>ENG 2 FIRE DETECTION</td>
</tr>
<tr>
<td>ENG 2 FIRE EXTINGUISHER</td>
</tr>
<tr>
<td>ENG 2 IGNITER & START</td>
</tr>
<tr>
<td>EXT SPKR CONTROL</td>
</tr>
<tr>
<td>FADEC GSE</td>
</tr>
<tr>
<td>FCU 2</td>
</tr>
<tr>
<td>FUEL PUMP 2</td>
</tr>
<tr>
<td>FUEL SHUT OFF VALVE 2</td>
</tr>
<tr>
<td>FUEL X FEED</td>
</tr>
<tr>
<td>GCU 1</td>
</tr>
<tr>
<td>HOIST CUTTER 2</td>
</tr>
<tr>
<td>HOIST ICS OPERATOR</td>
</tr>
<tr>
<td>HYD SYS 2</td>
</tr>
<tr>
<td>INSTRUMENT PANEL ILLUM.</td>
</tr>
<tr>
<td>LGD GEAR EMERG DOWN</td>
</tr>
<tr>
<td>LINEAR ACTUATOR 2</td>
</tr>
<tr>
<td>MAU 2 (AUX POWER)</td>
</tr>
<tr>
<td>MRC 2 (NIM2, VHF2, NAV2)</td>
</tr>
<tr>
<td>PFD PLT CONTROL</td>
</tr>
<tr>
<td>PITOT 2 FAIL INDICATION</td>
</tr>
<tr>
<td>PITOT 2 HEAT</td>
</tr>
<tr>
<td>PLT PFD</td>
</tr>
<tr>
<td>RTR PFD</td>
</tr>
</tbody>
</table>

UNMAINTAINED COPY FOR INFORMATION ONLY
ENGINE FAILURE

For any engine failure or loss of power the following must be carried out if the COND/HEATER system is fitted:

1. HEATER SOV 1 & 2 — CLOSE
2. COND/HEATER — OFF, (HEATER ON or AIR COND ON advisory message not displayed)

ENGINE OUT

1(2) ENG OUT + Audio Tone and Voice Warning

| Associated engine NG less than 34.3% or rate of change outside predetermined limits |
| - Adjust collective as required to maintain NR within limits |
| - Achieve safe OEI flight |

If engine at low power but still running above G.I.

- Select ENG GOV to MANUAL control

If manual control effective

- Continue flight controlling engine power manually

- Land as soon as practicable

If manual control ineffective

- Carry out ENGINE SHUT DOWN IN AN EMERGENCY procedure

- Land as soon as practicable

Note

If possible the torque of the manually controlled engine should be maintained at a torque level 10% below the other engine. (If PI on either/both engines is ITT or NG limited refer to TQ on MFD PWR PLANT page)

Consider relight only if cause of flameout known and relight essential. For Engine Restart in Flight procedure see page 63.
ENGINE DRIVE SHAFT FAILURE

Rapid decrease in engine 1(2) TQ to 0 with NF 1(2) above NR and/or possible 1(2) OVSPD.

NF approx 110% and/or PI 0%, drive shaft failure on affected engine

- Achieve safe OEI flight
- Carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure Page 20
- Land as soon as practicable

Note
Following engine drive shaft failure, NF may overspeed and reach the NF overspeed trip point (111%).

ENGINE IDLE

1(2) ENG IDLE + Voice Warning

Associated engine MODE switch at IDLE and collective not fully down

- Select engine MODE switch to FLT before TAKE-OFF
DOUBLE ENGINE FAILURE

A sequential or simultaneous failure of both engines will require entry into autorotation. If sufficient additional time is available to make an engine restart feasible, use the ENGINE RESTART IN FLIGHT page 63 procedure. If ENG 2 is to be started first the BUS TIE switch must be selected ON.

AUTOROTATION ENTRY AND LANDING PROCEDURE

The procedure which follows outlines the steps required to execute a successful entry and autorotation landing (ditching), time permitting, consult the appropriate Emergency Procedure for the additional steps required to deal with a specific type failure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Collective pitch</td>
<td>Smoothly and rapidly reduce to enter autorotation.</td>
</tr>
<tr>
<td>2. Cyclic</td>
<td>Adjust to obtain autorotation at between 80 KIAS (minimum rate of descent speed) and 100 KIAS (Best range speed).</td>
</tr>
<tr>
<td>3. Collective pitch</td>
<td>Adjust to obtain up to 110% NR.</td>
</tr>
<tr>
<td>4. Landing gear</td>
<td>Extend. (UP for ditching)</td>
</tr>
<tr>
<td>5. Landing site</td>
<td>Select and manoeuvre into wind.</td>
</tr>
<tr>
<td>7. Radar altimeter</td>
<td>Verify working.</td>
</tr>
<tr>
<td>8. Windscreen wipers</td>
<td>As required (FAST for ditching)</td>
</tr>
<tr>
<td>10. Shutdown</td>
<td>If appropriate and time available carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20.</td>
</tr>
<tr>
<td>11. Cyclic</td>
<td>At approximately 200 feet AGL, initiate a cyclic flare to a maximum 30° nose-up angle.</td>
</tr>
<tr>
<td>12. Collective pitch</td>
<td>Adjust, as required, to maintain NR at 110% maximum during the flare.</td>
</tr>
<tr>
<td>13. Cyclic / Collective pitch</td>
<td>At approximately 35 feet AGL, reduce pitch attitude to 10° nose-up and apply collective pitch, as required, to achieve touchdown at approximately 300 feet per minute or less.</td>
</tr>
<tr>
<td>14. Touchdown speed</td>
<td>As required by surface characteristics. Maximum touchdown speed 60 kts on paved surface and 40 kts on grass surface. (For ditching approach into oncoming waves, if possible, not exceeding 30 kts.)</td>
</tr>
<tr>
<td>15. Collective pitch</td>
<td>Following touchdown, lower promptly to conserve the remaining rotor speed.</td>
</tr>
<tr>
<td>16. Wheel brakes</td>
<td>Apply as required (land only).</td>
</tr>
<tr>
<td>17. Shutdown</td>
<td>If not carried out previously, execute the EMERGENCY/POST CRASH SHUTDOWN procedure page 20</td>
</tr>
<tr>
<td>18. Evacuate</td>
<td>Evacuate the aircraft as soon as possible.</td>
</tr>
</tbody>
</table>
SINGLE ENGINE FAILURE IN HOVER

GENERAL
The height loss during a single engine failure flyaway from hover for combinations of weight, altitude and temperature conditions is shown in Perf page 66 for weights up to 6400 kg. (for aircraft configured for operation between 6400 kg and 6800 kg see Supplement 50). The chart does not include any ground clearance height. If the hover height is greater than the height loss plus the ground clearance height required (15 ft minimum) then a flyaway capability exists and the Flyaway Procedure should be followed. The height loss is valid provided the flyaway manoeuvre is initiated within 1 second from engine failure recognition.

If a flyaway capability does not exist the landing/ditching procedure should be followed.

Note
If the helicopter weight, at the time of engine failure, is less or equal to the Hover OGE 2.5 min OEI weight, an engine failure in the hover will result in no height loss provided that the pilot does not intervene on the flight controls.

FLYAWAY PROCEDURE
1. Collective/ Cyclic control — Rotate nose down in 1 second to an attitude of -20°
 Recover pitch attitude to 5° nose up in approximately 5 seconds. Maintain this attitude while using the collective to droop the NR to a minimum of 90% NR, if necessary, to arrest the descent.
2. Acceleration — Maintain pitch attitude at 5° nose up and accelerate to V_{TOSS} (40 KIAS).
3. Climb — When the aircraft has achieved V_{TOSS} (40 KIAS) and a positive rate of climb lower collective to recover initial hover NR to continue climb.

LANDING/DITCHING PROCEDURE
1. Collective/ Cyclic control — Rotate nose down in 1 second to an attitude of no more than -20° while decreasing collective to maintain NR at 100%.
 Note
 The nose down rotation should be commensurate with hover height. An engine failure at low height will not allow a large pitch attitude change prior to water/ground impact. Engine failures at higher hover heights will permit greater pitch attitude change to gain aispeed energy that is subsequently used during the flare.
2. Cyclic — At 50 ft AGL rotate nose up as necessary (maximum 20°) to decelerate.
3. Approach/ Touchdown — Continue deceleration to attain landing attitude (level or 5° nose up) prior to touchdown or ditching at the slowest forward speed possible. Use collective to cushion touchdown.
4. Landing/Ditching — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG. Apply brakes as required for ground landing or initiate the Ditching Procedure described in Supplement 9.

ENGINE OIL PRESSURE LOW

- **1(2) ENG OIL PRESS** + Voice Warning

 Associated engine oil pressure below limit (less than 4.2 bar)

 - On affected engine check oil pressure and temperature on MFD

 If engine oil pressure and temperature normal:

 - Land as soon as practicable

 If engine oil pressure below limit or invalid:

 - Achieve safe OEI flight

 - On affected engine

 - Carry out ENGINE SHUT DOWN IN AN EMERGENCY procedure page 20

 - Land as soon as practicable

ENGINE EEC FAIL

- **1(2) EEC FAIL** + Voice Warning

 Automatic reversion to engine manual mode

 - On affected engine check engine parameters on MFD PWR PLANT

 - ENG GOV switch to MANUAL control ECL using beep switch

 - Land as soon as practicable

 Note

 If possible the torque of the manually controlled engine should be set at a torque level 10% below the other engine. (If PI on either/both engines is ITT or NG limited refer to TQ on MFD PWR PLANT page)
ENGINE SHUTDOWN IN EMERGENCY

CAUTION
Care should be taken in confirming the failed engine prior to commencing this shutdown procedure.

CAUTION
If there is evidence of combustion after engine shutdown in flight, carry out a dry motoring procedure as required to extinguish any possible fire.

Following an engine failure/malfunction, establish a safe OEI flight condition. On the failed engine, carry out the following shutdown procedures:

1. ENG Mode switch — OFF
2. FUEL PUMP switch — OFF, unless required for crossfeed
3. ENG FUEL switch — OFF, fuel valve indicator horizontal
4. HEATER SOV 1 & 2 — CLOSE (if fitted)
5. COND/HEATER — OFF, (HEATER ON or AIR COND ON advisory message not displayed) (if fitted)
6. Fuel contents — Monitor, use crossfeed as required

EMERGENCY/POST CRASH SHUTDOWN
In the event of an emergency or crash landing, priority must be given to ensuring that personnel are evacuated safely at the most appropriate time. Every effort should be made to carry out the following shutdown procedures immediately:

1. ENG MODE 1 & 2 switches — OFF
2. FUEL PUMP 1 & 2 switches — OFF.
3. ENG FUEL 1 & 2 switches — OFF.
4. ENG 1 & 2 FIRE ARM pushbuttons — Lift guard and press appropriate pushbutton, if required.
5. ENG EXTING switch — Select BTL 1 and/or 2, if required.
6. Rotor brake (if fitted) — Select PARK (Braking from 90% NR permitted in an Emergency)

When rotor stopped.

7. GEN 1 & 2 and BATT MASTER switches — OFF (using gang-bar).
FIRE

In the event of smoke or fire, prepare to land the aircraft without delay while completing fire suppression and/or smoke evacuation procedures. If it cannot be visually verified that the fire has been completely extinguished, whether the smoke has cleared or not, land immediately at the nearest suitable airfield or landing site.

ENGINE BAY FIRE (GROUND)

1(2) ENG FIRE + Audio Tone and Voice Warning
- Confirm on ECL engine FIRE light ON

On affected engine
- ENG MODE switch to IDLE
- Confirm engine FIRE
- ECL to OFF
- HEATER SOV switches CLOSE and COND/HTR switch OFF (if fitted)
- Lift FIRE/ARM guard and press illuminated pushbutton
- Set FIRE EXTING switch to BTL1
- ENG MODE switch to OFF
- Fuel PUMP OFF
- FUEL switch OFF
- XFEED CLOSED

If fire warning clears
- Set FIRE EXTING switch to BTL2

If fire warning persists
- Carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20

CAUTION

In case of a subsequent fire in the other engine bay the initial ARM 1(2) pushbutton must be deselected to allow operation of the ARM 2(1) pushbutton.
ENGINE BAY FIRE (FLIGHT)

1(2) ENG FIRE
- Confirm on ECL engine FIRE light ON
- Achieve safe OEI Flight
- HEATER SOV switches CLOSE and COND/HTR switch OFF (if fitted)

On affected engine
- ENG MODE switch to IDLE
- Confirm engine FIRE
- ECL to OFF
- Lift FIRE/ARM guard and press illuminated pushbutton
- Set FIRE EXTING switch to BTL1

When conditions permit:
- ENG MODE switch to OFF
- Fuel PUMP OFF
- FUEL switch OFF
- XFEED CLOSED

If fire warning clears
- Deselect FIRE/ARM pushbutton
- Land as soon as possible

If fire warning persists
- Set FIRE EXTING switch to BTL2
- LAND IMMEDIATELY

Note
When XFEED is CLOSED the affected engine fuel tank will have a maximum of 228 kg of unusable fuel. If essential, and the pilot is sure the engine fire has been contained, the unusable fuel can be made available by XFEED to OPEN and fuel PUMP ON.

ENGINE EXHAUST FIRE AFTER SHUTDOWN
If there are visible signs of fire in the engine exhaust, possibly accompanied by a rising ITT after shutdown, personnel should not be allowed to exit until the following actions have been carried out:

1. Fire warnings — Confirm not illuminated.
2. ENG GOV switch — Set MAN
3. ENGINE IGN circuit breaker — Out. (Ringed in WHITE on CB panel)
4. BUS TIE switch — Select ON (for ENG 2 only)
5. ECL — OFF
6. ECL starter pushbutton — Push
7. Gas generator (NG) — Note increasing.

Emerg-Malfunc Page 22 Rev. 20
8. **ECL starter pushbutton** — Push to stop when ITT decrease noted (not more than 45 seconds. Starter Duty Cycle must be respected)

9. **Rotors stopped** — Evacuate aircraft

BAGGAGE BAY FIRE

BAG FIRE

Voice Warning

- **On Ground**
 - Check BAG illuminated on FIRE EXTING panel
 - If BAG illuminated
 - Declare an emergency
 - Prepare to land as soon as possible
 - If smoke is detected in cabin
 - HEATER SOV switches CLOSE and COND/HTR switch OFF (if fitted)
 - Select VENT CREW switch to FAN HIGH
 - Select VENT PAX switch to ON
 - If BAG lamp not functioning
 - Carry out lamp check
 - If BAG lamp functioning,
 - possible spurious CAS indication
 - Land as soon as practicable

- **In Flight**
 - Carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20
 - If smoke clears
 - Land as soon as possible
 - If smoke persists and intensity increases significantly in cabin and cockpit
 - OPEN windows to ventilate cockpit
 - Reduce airspeed to below 50 KIAS, cabin emergency windows, left side only, PUSH to release
 - LAND IMMEDIATELY
 - Carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20

COCKPIT / CABIN FIRE (GROUND)

FIRE in cockpit or cabin

- Declare an emergency

- Carry out EMERGENCY/POST CRASH SHUTDOWN procedure Page 20

- Evacuate aircraft at the earliest opportunity
COCKPIT / CABIN FIRE (FLIGHT).

FIRE in cockpit or cabin

- Declare an emergency
- Prepare to land as soon as possible
- HEATER SOV switches CLOSE and
COND/HTR switch OFF (if fitted)
- Select VENT CREW FAN OFF

If the fire source is determined

- Use on board hand held extinguisher to fight fire

If the fire is extinguished

- Increase ventilation
- Land as soon as possible

If fire persists

- LAND IMMEDIATELY

If the fire is not determined and the fire persists

- LAND IMMEDIATELY
- Carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20

If the fire is not completely extinguished, increased ventilation may aggravate the problem

ELECTRICAL FIRE/SMOKE (GROUND)

An electrical fire is indicated by a smell of burning insulation and/or acrid smoke. If fire occurs:

Carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20.

ELECTRICAL FIRE/SMOKE (FLIGHT)

Electrical fires are often indicated by a smell of burning insulation and/or acrid smoke. The most important consideration is to maintain safe flight conditions while investigating the cause. Unnecessary electrical equipment must be switched off while detecting the source of an electrical fire. Unless the source of the smoke or fire can be positively identified (CAS display or C/B panel) and the equipment electrically isolated, carry out procedure detailed on next page.
ELECTRICAL FIRE/SMOKE (GROUND)

An electrical fire is indicated by a smell of burning insulation and/or acrid smoke. If fire occurs:

Carry out EMERGENCY/POST CRASH SHUTDOWN procedure. Page 20

ELECTRICAL FIRE/SMOKE (FLIGHT)

Electrical fires are often indicated by a smell of burning insulation and/or acrid smoke. The most important consideration is to maintain safe flight conditions while investigating the cause. If the source of the smoke or fire can be positively identified remove electrical power to the equipment, either by switching off, or by pulling the associated circuit breaker.

If the source of the smoke or fire cannot be positively identified, carry out the procedure detailed on next page.
ELECTRICAL FIRE/SMOKE PROCEDURE (FLIGHT)

- Right pilot select on-side radio/com (N°2)
- Switch FLOOD LT ON (for night operation)
- Switch GEN 1 & GEN 2 OFF
- Switch BATTERY MAIN OFF
 Loss of NON-ESS BUS 1 & 2, MAIN BUS 1 & 2
- Open windows to ventilate cockpit
 If operational conditions permit
- Land as soon as possible

Note
AP2 and ATT will remain engaged, but relevant green lights on autopilot control panel will be OFF

If unable to land and continued flight necessary continue the following procedure:

Does smoke continue?

No

Problem is on MAIN BUS 1 or 2, or NON ESS BUS’s

Yes

Problem is on ESS BUS 1 or ESS BUS 2

Switch MAIN BATTERY ON

Does smoke re-appear?

Yes

Problem is on MAIN BUS 1

No

Problem is on MAIN BUS 2 or NON ESS BUS’s

Switch MAIN BATTERY OFF

- Pull BUS CONTR 1 & 2 C/B
 (Ringed in YELLOW on CB panel)
- Switch GEN 2 ON
- Land as soon as possible
 Loss of MAIN BUS 1 & NON ESS BUS’s

Switch GEN 1 ON

Does smoke re-appear?

Yes

Problem is on MAIN BUS 2

No

Problem is on NON ESS BUS’s

- Pull BUS CONTR 1 & 2 C/B’s
 (Ringed in YELLOW on CB panel)
- Land as soon as possible
 Loss of MAIN BUS 2 & NON ESS BUS’s

Land as soon as possible

Loss of NON ESS BUS’s

Procedure continues on next page
ELECTRICAL FIRE/SMOKE PROCEDURE (FLIGHT) Cont.

Continues from previous page

Yes

- Pull BUS CONTR 1 & 2 C/B’s
- Pull ESS BUS TIE C/B
 (Ringed in YELLOW on C/B panel)
- Switch GEN 1 ON
- Re-engage AP1
- On RCP select AHRS and
 ADS switches to “1”
- Pull AUX BATT C/B
 (Ringed in YELLOW on C/B panel)

Does smoke continue?

No

Problem is on ESS BUS 2

- Land as soon as possible
 Loss of ESS BUS 2, MAIN
 BUS 2 & NON ESS BUS’s

Yes

Problem is on ESS BUS 1

- Land as soon as possible
 - Reset BUS CONTR 1 & 2,
 ESS BUS TIE & AUX BATT C/B’s.
 At pilot’s discretion
 - Pull ESS BUS 1 services
 C/B’s as deemed necessary.
 (Ringed in BLUE on C/B panel,
 except IGN 1 ringed in WHITE)

Note

Circuit Breaker panel diagram shown on next page.

CAUTION

Pulling the FORCE TRIM C/B will cause the FTR switches to be inoperative. Flight controls must therefore be moved against the trim spring.
Overhead Circuit Breaker Panel

LEGEND
- ESS BUS
- MAIN BUS
- NON-ESS BUS
ELECTRICAL FIRE/SMOKE PROCEDURE (FLIGHT)

- Reduce speed, recommended Vy
- Open windows to ventilate cockpit
 If operational conditions permit
- Land as soon as possible

- Right pilot select on-side radio/com (N°2)
- Switch pilot UTILITY light ON (for night operation)
- Set MFD to PWR PLANT page to monitor continuously
 ESS BUS 2 voltage during the complete procedure
- Switch GEN 1 & GEN 2 OFF
- Switch BATTERY MAIN OFF (Loss of NON-ESS BUS 1 & 2, MAIN 1 & 2)

Note
AP2 and ATT will remain engaged, but relevant green lights on
autopilot control panel will be OFF

WARNING
Actions on the right hand column should be
carried out immediately (if smoke clears or
not) whenever ESS BUS 2 voltage drops
below 22V (yellow range) or fluctuates

Smoke does not clear

- Switch GEN 1 & 2 ON, BATTERY
 MASTER and AUX OFF
- Re-engage AP1
 If smoke clears
- Land as soon as practicable
 If smoke does not clear
- Land as soon as possible
 If smoke and/or fire severe
- LAND IMMEDIATELY
- Carry out EMERGENCY/POST CRASH
 SHUTDOWN procedure page 20

Smoke clears

- Switch BATTERY MAIN ON
 (MAIN BUS 1 restored)
Does smoke appear? Yes

Switch BATTERY MAIN OFF
- Land as soon as possible
 within 30 minutes
 see Extended Flight
 Endurance After Double
 DC Generator Failure page 12

No

- Switch GEN 1 ON
 (MAIN BUS 2 restored)
Does smoke appear? Yes

No

- Re-engage AP1
- Land as soon as practicable

No

Rev. 21 Emerg-Malfunc Page 25
WHEEL BRAKE FIRE
ON GROUND
When aircraft is stationary:
1. Shutdown — Carry out EMERGENCY/POST CRASH SHUTDOWN procedure

IN FLIGHT
1. Landing gear — Extend.
2. Aircraft — Land as soon as possible.

When aircraft is stationary on the ground:
3. Shutdown — Carry out EMERGENCY/POST CRASH SHUTDOWN procedure page 20

CAUTION
Use of pedal brakes or parking brake may aggravate the fire.

Note
Consider using one of the cabin hand fire extinguishers or other available extinguishers to extinguish the fire.
LANDING GEAR

LANDING GEAR FAILS TO LOCK DOWN

If, after selecting the landing gear DOWN any indicators remain blank or amber, carry out the following:

- Press LAMP TEST, confirm indicator lights functioning
- Reduce airspeed to less than 120 KIAS
- Check LDG GEAR NORM pressure (MFD Hydraulic synoptic page)

If pressure low (amber box)

- EMER DOWN pushbutton
 lift guard and press

If pressure normal (green box)

- Carry out the following actions, confirming landing gear indications, after each action:
 - Check LDG GEAR circuit breakers IN (2)
 - Cycle LDG GEAR lever, (maximum three times)
 - EMER DOWN pushbutton
 lift guard and press

If all indicators illuminate green (down and locked)

- Continue to land

If any indicators remain blank or amber

- Attempt to confirm if landing gear is down

If all indicators illuminate green (down and locked)

- Continue to land

WARNING

If any indicators remain blank or amber (undercarriage not locked down) then the hydraulic pressure in EMER DOWN is sufficient to keep undercarriage extended when rotor speed is above 20% NR. Below 20% NR the landing gear not locked down may collapse.

- Continue to land
- Land vertically on flat hard surface
- Do not taxi
- Consider evacuating aircraft, supporting aircraft or landing on suitable soft surface prior to shutting down rotor.

Note

When the undercarriage has been extended using the EMER DOWN then subsequent retraction is not possible.

Note

For OAT of -30° C and below the undercarriage extension time may double.
STATIC PORT OBSTRUCTION

If erratic readings from the airspeed indicator and altimeter occur, with the STATIC source switch in NORMAL position, proceed as follows:

1. Storm window and vents — Closed
2. COND/HEATER (if installed) — OFF
3. STATIC source switch — Remove guard and select ALTERNATE
4. Proceed with flight

This procedure selects an alternate static source utilizing cabin air.

CAUTION

When utilizing the alternate static source, decrease the altimeter reading by 200ft.
ROTOR UNDER-SPEED

ROTOR LOW

- Rotor RPM below limit
- Check NR on PFD
- Tone and Rotor Low
 Power ON: below 98% (AEO), or 90% (OEI)
 Power OFF: below 95%
 If rotor speed low
 - Lower collective to increase rotor speed
 - Refer to Engine Emergency and Malfunction drills if relevant

ROTOR OVERSPEED

ROTOR HIGH

- Rotor RPM above limit
- Check NR on PFD
- Tone and “ROTOR HIGH”
 Power ON: above 104% (AEO and OEI)
 Power OFF: above 110%
 If rotor speed high
 - Raise collective to decrease rotor speed
 - Refer to engine Emergency and Malfunction drills if relevant
TRANSMISSION SYSTEM FAILURES

In general a single failure indication dictates that the helicopter **Land as soon as practicable** while a double failure dictates **Land as soon as possible**. If multiple failure indication, including abnormal noise and/or vibration are present **LAND IMMEDIATELY**

MAIN GEARBOX OIL PRESSURE LOW

MGB OIL PRESS + Voice Warning

Oil pressure below limits at one or both engine MGB inputs and in MGB oil system. (less than 3.1 bar)

- Check MGB oil pressure on MFD

 - If oil pressure normal
 - **Land as soon as practicable**
 - If oil pressure low, invalid and/or caution illuminates
 - **1-2 BRG TEMP**
 - **Reduce power as soon as operational conditions permit**
 - **Land as soon as possible**

Note

If MGB CHIP MAST or MGB CHIP SUMP cautions illuminate when MGB OIL PRESS warning is illuminated the CHIP BURNER must not be activated.

MAIN GEARBOX OIL TEMPERATURE HIGH

MGB OIL TEMP + Voice Warning

MGB oil temperature above limit (greater than 109°C)

- Check MGB oil temperature and pressure on MFD

 - If oil temperature normal
 - **Continue flight monitoring oil pressure and temperature**
 - If oil temperature high or invalid
 - **Reduce power as soon as operational conditions permit**
 - **Land as soon as possible**
MALFUNCTION PROCEDURES

CAS CAUTION SYSTEM

CAUTIONS WITH VOICE MESSAGES

— **LANDING GEAR** voice message, associated with amber caution, is active when the radio altimeter height is less than 150 feet and undercarriage is retracted.

— ‘AUTOPilot’ voice message, associated with any AP amber caution

TABLE OF CAS CAUTION MESSAGES

<table>
<thead>
<tr>
<th>CAS Caption</th>
<th>Page</th>
<th>Failure/System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(2) ADS FAIL</td>
<td>42</td>
<td>Associated ADS failed</td>
</tr>
<tr>
<td>AFCS DEGRADED</td>
<td>40a</td>
<td>AFCS functioning degraded</td>
</tr>
<tr>
<td>1(2) AHRS FAIL</td>
<td>43</td>
<td>Associated AHRS failed</td>
</tr>
<tr>
<td>1(2) AP FAIL</td>
<td>37</td>
<td>Associated autopilot failed</td>
</tr>
<tr>
<td>1(2) AP OFF</td>
<td>38</td>
<td>Associated autopilot switched OFF</td>
</tr>
<tr>
<td>1(2) AP TEST ABORT</td>
<td>40a</td>
<td>AFCS Test procedure aborted (only active on ground)</td>
</tr>
<tr>
<td>ATT OFF</td>
<td>39</td>
<td>AFCS attitude mode OFF</td>
</tr>
<tr>
<td>1(2)-(8) AUDIO FAIL</td>
<td>48</td>
<td>Associated audio system failed</td>
</tr>
<tr>
<td>AUX BATT OFF</td>
<td>50</td>
<td>Auxiliary battery off line</td>
</tr>
<tr>
<td>AVIONIC FAULT</td>
<td>44</td>
<td>Avionic fault</td>
</tr>
<tr>
<td>AWG FAIL</td>
<td>43</td>
<td>Aural warning generator failed</td>
</tr>
<tr>
<td>BAG DOOR</td>
<td>77</td>
<td>Baggage door open</td>
</tr>
<tr>
<td>BATT OFF LINE</td>
<td>51</td>
<td>MAIN battery and/or AUX battery not connected to ESS BUS</td>
</tr>
<tr>
<td>1(2) BRG TEMP</td>
<td>89</td>
<td>Associated ENG-MGB input bearing over heating</td>
</tr>
<tr>
<td>BUS TIE OPEN</td>
<td>51</td>
<td>DC MAIN bus tie open</td>
</tr>
<tr>
<td>CABIN DOOR</td>
<td>77</td>
<td>Cabin door open</td>
</tr>
<tr>
<td>CHIP DET TEST</td>
<td>91</td>
<td>Drive system chip detect testing system failed</td>
</tr>
<tr>
<td>CHIP DET UNIT</td>
<td>91</td>
<td>Drive system chip detect unit failed</td>
</tr>
<tr>
<td>CHIP MAST FAIL</td>
<td>91</td>
<td>Chip detector on main gearbox mast failed</td>
</tr>
<tr>
<td>CHIP SUMP FAIL</td>
<td>91</td>
<td>Chip detector on main gearbox sump failed</td>
</tr>
<tr>
<td>COCKPIT DOOR</td>
<td>76</td>
<td>Cockpit door open</td>
</tr>
<tr>
<td>1(2) COL FAIL</td>
<td>40c</td>
<td>Collective Autopilot Failure</td>
</tr>
<tr>
<td>CVR FAIL</td>
<td>47</td>
<td>Cockpit voice recorder failed</td>
</tr>
<tr>
<td>DC BUS FAIL</td>
<td>52</td>
<td>DC bus failed</td>
</tr>
<tr>
<td>1(2) DC GEN</td>
<td>49</td>
<td>Associated generator failed</td>
</tr>
<tr>
<td>1(2) DC GEN HOT</td>
<td>49</td>
<td>Associated generator overheating</td>
</tr>
<tr>
<td>CAS Caption</td>
<td>Page</td>
<td>Failure/System State</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>1(2) DCU</td>
<td>59</td>
<td>Associated engine control functions degraded</td>
</tr>
<tr>
<td>1(2)(3)(4) DU OVHT</td>
<td>42</td>
<td>Associated display unit overheating</td>
</tr>
<tr>
<td>1(2)(3)(4) DU DEGRADED</td>
<td>42</td>
<td>Associated display unit degraded</td>
</tr>
<tr>
<td>1(2) ECL FAIL</td>
<td>57</td>
<td>Associated engine control lever beep trim failed</td>
</tr>
<tr>
<td>1(2) ECL POS</td>
<td>57</td>
<td>Associated engine control lever out of flight position.</td>
</tr>
<tr>
<td>1(2) EEC DATA</td>
<td>58</td>
<td>Associated engine data degraded</td>
</tr>
<tr>
<td>EMER LGD PRESS</td>
<td>70</td>
<td>Emergency landing gear deployment system pressure low</td>
</tr>
<tr>
<td>ENG ANALOG FAIL</td>
<td>62</td>
<td>Engine analogue monitoring systems failed</td>
</tr>
<tr>
<td>1(2) ENG CHIP</td>
<td>55</td>
<td>Associated engine chip detected</td>
</tr>
<tr>
<td>1(2) ENG LIM EXPIRE</td>
<td>54</td>
<td>Associated engine exceeded 2.5min OEI rating.</td>
</tr>
<tr>
<td>1(2) ENG MODE SEL</td>
<td>57</td>
<td>Associated engine MODE switch failed</td>
</tr>
<tr>
<td>1(2) ENG OIL TEMP</td>
<td>54</td>
<td>Associated engine oil overtemp (> 140°C)</td>
</tr>
<tr>
<td>EXT PWR DOOR</td>
<td>77</td>
<td>External Power door open</td>
</tr>
<tr>
<td>1(2) FCU FAIL</td>
<td>66</td>
<td>Associated fuel contents gauging unit failed</td>
</tr>
<tr>
<td>1(2) FCU TEST FAIL</td>
<td>68</td>
<td>Associated fuel contents gauging unit self test failed (only active on ground)</td>
</tr>
<tr>
<td>FDR FAIL</td>
<td>46</td>
<td>Flight data recorder failed</td>
</tr>
<tr>
<td>1(2) FIRE DET</td>
<td>56</td>
<td>Associated fire detect system failed</td>
</tr>
<tr>
<td>1(2) FMS FAIL</td>
<td>47</td>
<td>Associated FMS failed</td>
</tr>
<tr>
<td>1(2) FMS/GPS MSCP</td>
<td>47</td>
<td>Miscompare between FMS and GPS position data</td>
</tr>
<tr>
<td>FMS/GPS MSCP UNAVL</td>
<td>48</td>
<td>FMS/GPS position data checking function not available</td>
</tr>
<tr>
<td>1(2) FUEL FILTER</td>
<td>60</td>
<td>Associated fuel filter impending bypass</td>
</tr>
<tr>
<td>1(2) FUEL HEATER</td>
<td>61</td>
<td>Fuel heater system failed</td>
</tr>
<tr>
<td>1(2) FUEL ICING</td>
<td>61</td>
<td>Associated fuel temperature less than 5°C</td>
</tr>
<tr>
<td>1(2) FUEL LOW</td>
<td>65</td>
<td>Associated fuel level less that 92kg</td>
</tr>
<tr>
<td>1(2) FUEL LOW FAIL</td>
<td>67</td>
<td>Associated fuel low sensor failed</td>
</tr>
<tr>
<td>1(2) FUEL PROBE</td>
<td>67</td>
<td>Associated fuel contents probe failed</td>
</tr>
<tr>
<td>1(2) FUEL PUMP</td>
<td>65</td>
<td>Associated fuel pump failed (< 0.6 bar)</td>
</tr>
<tr>
<td>FWD(AFT) COND FAIL</td>
<td>78a</td>
<td>Crew(PAX) conditioner failure</td>
</tr>
<tr>
<td>1(2) GEN OVLD</td>
<td>50</td>
<td>Associated DC Generator Overload (EPIC Phase 5, or later)</td>
</tr>
<tr>
<td>GPS FAIL</td>
<td>47</td>
<td>GPS failed</td>
</tr>
<tr>
<td>HEATER FAIL</td>
<td>78a</td>
<td>Heater system failed</td>
</tr>
</tbody>
</table>

Emerg-Malfunc Page 32

Rev. 21

CAUTION

MSGs
<table>
<thead>
<tr>
<th>CAS Caption</th>
<th>Page</th>
<th>Failure/System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(2) HOT START</td>
<td>59</td>
<td>Associated engine ITT limits exceeded on engine starting</td>
</tr>
<tr>
<td>1(2) HYD MIN</td>
<td>71</td>
<td>Associated hydraulic system fluid level low</td>
</tr>
<tr>
<td>1(2) HYD OIL PRESS</td>
<td>69</td>
<td>Associated hydraulic system pressure low (less than 163 bar)</td>
</tr>
<tr>
<td>1(2) HYD OIL TEMP</td>
<td>70</td>
<td>Associated hydraulic system overtemp (greater than 134°C)</td>
</tr>
<tr>
<td>1(2)(4) HYD PUMP</td>
<td>71</td>
<td>Associated hydraulic pump failed</td>
</tr>
<tr>
<td>HYD UTIL PRESS</td>
<td>69</td>
<td>Utility hydraulic pressure low</td>
</tr>
<tr>
<td>IGB CHIP</td>
<td>90</td>
<td>Intermediate gearbox chip detected</td>
</tr>
<tr>
<td>IGB CHIP FAIL</td>
<td>91</td>
<td>Chip detector on intermediate gearbox failed</td>
</tr>
<tr>
<td>IGB OIL LOW</td>
<td>90</td>
<td>Intermediate gearbox oil level low (only active on ground)</td>
</tr>
<tr>
<td>IGB OIL TEMP</td>
<td>90</td>
<td>Intermediate gearbox oil overtemp (greater than 108°C)</td>
</tr>
<tr>
<td>1(2) ITT LIMITER</td>
<td>60</td>
<td>Associated ITT limiter not functioning</td>
</tr>
<tr>
<td>1(2) ITT MISCOMPARE</td>
<td>62</td>
<td>Discrepancy between EEC and analog value of ITT</td>
</tr>
<tr>
<td>LANDING GEAR</td>
<td>73</td>
<td>Landing gear retracted and aircraft below 150 ft AGL</td>
</tr>
<tr>
<td>MAIN BATT OFF</td>
<td>52</td>
<td>Main battery off line</td>
</tr>
<tr>
<td>1(2) MAU OVHT</td>
<td>44</td>
<td>Associated MAU overtemp</td>
</tr>
<tr>
<td>1(2) MCDU OVHT</td>
<td>46</td>
<td>Associated MCDU overtemp</td>
</tr>
<tr>
<td>MGB CHIP MAST</td>
<td>88</td>
<td>Main gearbox mast chip detected</td>
</tr>
<tr>
<td>MGB CHIP SUMP</td>
<td>88</td>
<td>Main gearbox sump chip detected</td>
</tr>
<tr>
<td>MGB OIL FILTER</td>
<td>88</td>
<td>Main gearbox oil filter in bypass</td>
</tr>
<tr>
<td>MGB OIL LOW</td>
<td>88</td>
<td>Main gearbox oil level low (only active on ground)</td>
</tr>
<tr>
<td>1(2) MGB OIL PRESS</td>
<td>89</td>
<td>Associated MGB engine input oil pressure low (less than 3.1 bar)</td>
</tr>
<tr>
<td>MISTRIM</td>
<td>40</td>
<td>Linear actuators not re-centered by trim</td>
</tr>
<tr>
<td>1(2) MRC OVHT</td>
<td>48</td>
<td>Modular Radio/NAV unit overheat</td>
</tr>
<tr>
<td>1(2) NF MISCOMPARE</td>
<td>62</td>
<td>Discrepancy between EEC and analogue value of NF</td>
</tr>
<tr>
<td>1(2) NG MISCOMPARE</td>
<td>62</td>
<td>Discrepancy between EEC and analogue value of NG</td>
</tr>
<tr>
<td>NOSE WHL UNLK</td>
<td>72</td>
<td>Nose wheel unlocked</td>
</tr>
<tr>
<td>NR MISCOMPARE</td>
<td>62</td>
<td>Discrepancy between EEC and analogue value of NR</td>
</tr>
<tr>
<td>1(2) OVSPD</td>
<td>58</td>
<td>Associated engine NF overspeed triggered</td>
</tr>
<tr>
<td>1(2) OVSPD DET</td>
<td>60</td>
<td>Associated engine overspeed detection system failed</td>
</tr>
<tr>
<td>PARK BRK ON</td>
<td>73</td>
<td>Park brake on</td>
</tr>
<tr>
<td>CAS Caption</td>
<td>Page</td>
<td>Failure/System State</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>PARK BRK PRESS</td>
<td>73</td>
<td>Park brake system low pressure</td>
</tr>
<tr>
<td>1(2) PITOT FAIL</td>
<td>75</td>
<td>Associated pitot heating failed</td>
</tr>
<tr>
<td>1(2) PITOT HEAT OFF</td>
<td>75</td>
<td>Associated pitot heating system switched off and OAT less than 4°C</td>
</tr>
<tr>
<td>1(2) P(R)(Y) AP FAIL</td>
<td>39</td>
<td>Associated AP Pitch, Roll or Yaw axis failed</td>
</tr>
<tr>
<td>1(2) P(R)(Y) AP OFF</td>
<td>39</td>
<td>Associated AP Pitch, Roll or Yaw axis OFF</td>
</tr>
<tr>
<td>P(R)(Y) TRIM FAIL</td>
<td>40</td>
<td>Pitch, Roll or Yaw trim system failure</td>
</tr>
<tr>
<td>Rotor BRK FAIL</td>
<td>78</td>
<td>Rotor brake system in failure condition</td>
</tr>
<tr>
<td>RPM SELECT</td>
<td>87</td>
<td>RPM selector switch failed</td>
</tr>
<tr>
<td>1(2) SAS DEGRADED</td>
<td>40a</td>
<td>Associated SAS system degraded</td>
</tr>
<tr>
<td>1(2) SERVO</td>
<td>72</td>
<td>Associated hydraulic servo actuator in bypass</td>
</tr>
<tr>
<td>SYS CONFIG FAIL</td>
<td>46</td>
<td>Software or hardware system configuration error (only active on ground)</td>
</tr>
<tr>
<td>TGB CHIP</td>
<td>90</td>
<td>Tail gearbox chip detected</td>
</tr>
<tr>
<td>TGB CHIP FAIL</td>
<td>91</td>
<td>Tail gearbox chip detect system failed</td>
</tr>
<tr>
<td>TGB OIL LOW</td>
<td>90</td>
<td>Tail gearbox oil low (only active on ground)</td>
</tr>
<tr>
<td>TGB OIL TEMP</td>
<td>91</td>
<td>Tail gearbox oil overtemp (> 109°C)</td>
</tr>
<tr>
<td>1(2) TQ LIMITER</td>
<td>59</td>
<td>Associated engine torque limiter failed</td>
</tr>
<tr>
<td>1(2) TQ MISCOMPARE</td>
<td>62</td>
<td>Discrepancy between EEC and analogue value of TQ</td>
</tr>
<tr>
<td>1(2) TRIM FAIL</td>
<td>40</td>
<td>Trim system failed</td>
</tr>
<tr>
<td>VALIDATE CONFIG</td>
<td>46</td>
<td>Software or hardware configuration needs validation.</td>
</tr>
<tr>
<td>VENT FAIL</td>
<td>78</td>
<td>Cockpit ventilation fan failed or nose avionic fans failure</td>
</tr>
<tr>
<td>VNE MISCOMPARE</td>
<td>75</td>
<td>Miscompare between ADS 1 and 2 value of VNE</td>
</tr>
<tr>
<td>1(2) VHF COM OVHT</td>
<td>48</td>
<td>Associated VHF radio overheat</td>
</tr>
<tr>
<td>1(2) WOW FAIL</td>
<td>76</td>
<td>Associated Weight On Wheels (WOW) switch failed</td>
</tr>
<tr>
<td>XMSN OVTQ</td>
<td>87</td>
<td>Main gearbox overtorque</td>
</tr>
</tbody>
</table>
TABLE OF PFD AND MFD MESSAGES

<table>
<thead>
<tr>
<th>Message</th>
<th>Page</th>
<th>Failure/System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘ATT FAIL’</td>
<td>79</td>
<td>Failure of attitude information (on associated side)</td>
</tr>
<tr>
<td>‘1(2)CASMSCP’ on PFD</td>
<td>81</td>
<td>MAU 1 (MAU 2) CAS WARNING message list discrepancy.</td>
</tr>
<tr>
<td>‘HDG FAIL’</td>
<td>79</td>
<td>Failure of heading information (on associated side)</td>
</tr>
<tr>
<td>‘RAD’ on display</td>
<td>86a</td>
<td>Double RAD ALT failure</td>
</tr>
<tr>
<td>‘VEL FAIL’ on compass display</td>
<td>86b</td>
<td>Double AHRS groundspeed failure</td>
</tr>
<tr>
<td>AMBER Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘1-2-3-4 DU’ on attitude indicator</td>
<td>83</td>
<td>Display unit graphics symbology malfunction</td>
</tr>
<tr>
<td>‘2.5m’ on side of PI and between NG and ITT indications</td>
<td>84</td>
<td>Associated side engine in 2.5 minute rating, message will flash 10”sec before 2.5min limit expires.</td>
</tr>
<tr>
<td>‘ADS1(2)’ on attitude indicator</td>
<td>80</td>
<td>Pilot and Copilot ADS information from the same source. (1-Copilot side 2-Pilot side)</td>
</tr>
<tr>
<td>‘AHRS1(2)’ on attitude indicator</td>
<td>79</td>
<td>Pilot and Copilot attitude information from the same source. (1-Copilot side 2-Pilot side)</td>
</tr>
<tr>
<td>‘ALT’ on attitude display tape</td>
<td>85</td>
<td>Miscompare between ADS 1 & 2 for attitude information (±150ft)</td>
</tr>
<tr>
<td>‘ATT’ on attitude indicator</td>
<td>81</td>
<td>Miscompare between AHRS 1 & 2 for Pitch and Roll information (±5° in pitch and ±6° in roll)</td>
</tr>
<tr>
<td>‘1(2)CASMSCP’ on PFD</td>
<td>81</td>
<td>MAU 1 (MAU 2) CAS CAUTION message list discrepancy.</td>
</tr>
<tr>
<td>DG1(2)</td>
<td>79</td>
<td>Pilot and Copilot heading information from the same source. (1-Copilot side 2-Pilot side) and selection of AHRS 1(2)</td>
</tr>
<tr>
<td>‘FD FAIL’ on PFD</td>
<td>86</td>
<td>Dual Flight Director failure</td>
</tr>
<tr>
<td>‘HDG’ on attitude indicator</td>
<td>85</td>
<td>Miscompare between AHRS 1 & 2 for Heading information (±10° heading)</td>
</tr>
<tr>
<td>‘HTML’ on attitude indicator</td>
<td>86c</td>
<td>Aircraft passed Safety Height and/or Ultimate Fly Up Limit (EPIC Software Phase 5, or later)</td>
</tr>
<tr>
<td>‘IAS’ on airspeed tape</td>
<td>85</td>
<td>Miscompare between ADS 1 & 2 airspeed information.(±20 kts)</td>
</tr>
<tr>
<td>‘LOC’ on HSI</td>
<td>85</td>
<td>Miscompare between LOC Lateral and/or Vertical deviation</td>
</tr>
</tbody>
</table>

CAUTION MSGs
<table>
<thead>
<tr>
<th>Message</th>
<th>Page</th>
<th>Failure/System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG 1(2)</td>
<td>79</td>
<td>Pilot and Copilot heading information from the same source. (1-Copilot side 2-Pilot side) and selection of AHRS 1(2)</td>
</tr>
<tr>
<td>1(2) MAU</td>
<td>82</td>
<td>Associated MAU degraded</td>
</tr>
<tr>
<td>‘MIN’ on attitude indicator</td>
<td>84</td>
<td>Altitude equal or less than decision height (DH)</td>
</tr>
<tr>
<td>‘NAV’ on PFD</td>
<td>85</td>
<td>Miscompare between navigation LOC information from MAU 1 and 2.</td>
</tr>
<tr>
<td>‘OAT #’C amber on PFD</td>
<td>86c</td>
<td>Miscompare between the two OAT probes is 6°C or greater (EPIC Software Phase 5, or later)</td>
</tr>
<tr>
<td>‘PITCH’ on attitude indicator</td>
<td>85</td>
<td>Miscompare between AHRS 1 & 2 for Pitch information (±5° in pitch)</td>
</tr>
<tr>
<td>RAD 1(2) on RAD ALT display</td>
<td>86</td>
<td>RAD ALT failure, on double RAD ALT system, reconfiguration to functioning system</td>
</tr>
<tr>
<td>RAD on RAD ALT display</td>
<td>86a</td>
<td>Miscompare between MAU 1 & 2 Radio Altimeter altitude information (10ft+0.625x(rad alt 1+ rad alt 2))</td>
</tr>
<tr>
<td>‘ROLL’ on attitude indicator</td>
<td>85</td>
<td>Miscompare between AHRS 1 & 2 for Roll information (±6° in roll)</td>
</tr>
<tr>
<td>‘VEL’ on compass display</td>
<td>86b</td>
<td>Miscompare between AHRS 1 & 2 GS data when groundspeed below 20 kts (EPIC Software Phase 5, or later)</td>
</tr>
<tr>
<td>‘VTA’ on attitude indicator</td>
<td>86b</td>
<td>During VGP approach when RAD ALT height between MAP and MAP+100ft</td>
</tr>
</tbody>
</table>
AUTOMATIC FLIGHT CONTROL SYSTEM

AUTOPILOT FAIL

1(2) AP FAIL + Aural Message

AFCS DEGRADED

Associated autopilot failure

If during SAR mission
- Continue flight with FD modes coupled as required
- Fly attentive reducing speed to 140 KIAS, level flight, or 100 KIAS and 1000 fpm in climb.

If during Non SAR mission
- Continue flight attentive reducing speed to 140 KIAS, level flight, or 100 KIAS and 1000 fpm in climb.
- Decouple FD unless in approach, missed approach, approach and departure to/from hover and hover.
- Below 500 ft AGL fly manually (except in approach, missed approach, approach and departure to/from hover and hover)

- If subsequent caution illuminates

1-2 AP FAIL + Aural Message

- Continue flight manually not exceeding 140 KIAS (100 KIAS in turbulence, IMC or approach)
AUTOPilot OFF

1(2) AP OFF + Aural Message
AFCS DEGRADED
Associate AP not switched on
On affected AP
- Confirm selected ON.
If fault remains

During SAR Mission
- Continue flight with FD modes coupled as required
- Fly attentive reducing speed to 140 KIAS, level flight, or 100 KIAS and 1000fpm in climb.
- If subsequent caution illuminates
- Continue flight manually not exceeding 140 KIAS (100 KIAS in turbulence, IMC or approach)

During non SAR mission
- Continue flight attentive reducing speed to 140 KIAS, level flight, or 100 KIAS and 1000fpm in climb.
- Decouple FD unless in approach, missed approach, approach and departure to/from hover and hover
- Below 500 ft AGL fly manually (except in approach, missed approach, approach and departure to/from hover and hover)

1-2 AP OFF + Aural Message
- If subsequent caution illuminates

AFCS
AUTOPilot Axis Off

1(2) P(R)(Y) AP OFF + Aural Message

Pitch (Roll) (Yaw) axis of AP1(2) not engaged

On affected AP
- Disengage and re-engage AP

 If fault remains
 - Continue flight attentive
 - If PITCH axis failed reduce speed
to 140 KIAS, level flight,
or 100 KIAS and 1000fpm in climb
- Below 500ft AGL fly manually

ATTITUDE SYSTEM OFF

ATT OFF + SAS message displayed on both PFD's

Attitude hold system not engaged

- Engage ATT on autopilot controller

If associated with cyclic freedom motion in longitudinal and/or lateral direction with loss of function of FTR switch and cyclic beep trim

Cyclic force trim failure
Collective FD modes automatically change to uncoupled (with chime)
Cyclic FD modes do not function, cyclic steering bars remain centred

- Fly manually

Note
With ATT system not engaged the aircraft flies in SAS mode only (SAS message on PFD).
AFCS TRIM FAILURE

1(2) TRIM FAIL
Trim system failure on all axes while AP 1(2) has priority
- Disengage and re-engage affected AP

If fault clears
- Continue Flight

If 2(1) TRIM FAIL or 1-2 TRIM FAIL appears

If MISTRIM caution appears manually trim controls

PITCH, ROLL, YAW TRIM FAIL

1(2) P(R)(Y) TRIM FAIL
Failure of Pitch (Roll) (Yaw) trim while AP1(2) has priority
- Disengage and re-engage affected AP

If fault clears
- Continue Flight

If 2(1) P(R)(Y) TRIM FAIL or 1-2 P(R)(Y) TRIM FAIL appears

If MISTRIM caution appears manually trim controls

MISTRIM

Linear actuators(s) not centered
- Continue flight using FTR button to obtain desired flight condition, and centre linear actuators, being attentive to autopilot functioning.
AFCS DEGRADED

- AFCS DEGRADED
 - AFCS functions degraded
 - Continue flight attentive reducing speed to 140 KIAS, level flight, or 100 KIAS and 1000fpm in climb
 - Below 500ft AGL fly manually

SAS DEGRADED

- 1(2) SAS DEGRADED
 - Associated SAS degraded operation
 - Continue flight attentive. Expect reduced cyclic sensitivity

AP TEST ABORT

- 1(2) AP TEST ABORT
 - AP TEST aborted by pilot action or aircraft lifted off before test completion
 - To clear caution re-engage AP TEST with aircraft on ground and wait for test to complete

CYCLIC FORCE TRIM OFF OR FAIL

Cyclic force trim switched OFF (FORCE TRIM switch on MISC control panel) or cyclic force trim failure causes a disconnect of the longitudinal and/or lateral clutches and is indicated by the cyclic being free to move in pitch and/or roll axis with loss of functioning of the cyclic trim release (FTR switch) and cyclic beep trim system. The caution (SAS message on PFD) may also illuminate. The cyclic must be used hands-on to prevent it moving from its selected position.

CYCLIC FORCE TRIM RELEASE FAILURE

Cyclic force trim release failure, due to a fault which removes electric power to the clutches of the longitudinal and lateral trim will result in cyclic longitudinal and lateral clutches becoming permanently engaged. This will require the pilot to fly the aircraft against the cyclic force spring feel to manoeuvre the aircraft, or use the cyclic beep trim, as cyclic FTR button does not function.

In this case it is suggested that a FD mode (i.e. IAS) is engaged and the cyclic beep trim used to maintain the required flight condition. Coupled SAR mode operations are not affected.
COLLECTIVE FORCE TRIM OFF OR FAIL
Collective force trim switched OFF (CLTV/YAW switch on MISC control panel) or collective force trim failure causes a disconnect of the collective clutch and is indicated by the collective being free to move with loss of functioning of the collective trim release (FTR switch).
The collective must be used hands-on to prevent it moving from its selected position or the collective manual friction could be applied as required.
When a FD mode is engaged, and coupled, and the collective trim is switched OFF (MISC control panel) or fails, a chime sound is generated, the collective may not maintain its selected position, the CLTV annunciation will illuminate on the top left of the ADI display, and the CLTV/YAW OFF green advisory will illuminate on the CAS. Collective modes are available uncoupled only.

COLLECTIVE FORCE TRIM RELEASE FAILURE
Collective force trim release failure, due to a fault which removes electric power to the clutch of the collective trim, will result in the collective clutch becoming permanently engaged. This will require the pilot to fly the aircraft against the collective force spring feel to manoeuvre the aircraft, as the collective FTR button does not function.
In this case when large collective movements are not required, it is suggested that a FD mode (ie ALT) is engaged and the collective beep trim used to maintain the required flight condition. Coupled SAR mode operations are not affected.

AFCS QUICK DISCONNECT PROCEDURE
For situations where faults are suspected in the AFCS, but with no CAS cautions illuminated, and the AP functions need to be disengaged, all AP/AFCS functions can be disconnected by pressing the SAS REL button on the cyclic grip.

GUIDANCE CONTROL PANEL FAILURE
In case of Guidance Control Panel failure, recognised as non functionality of panel pushbuttons (modes cannot be changed or disengaged using panel), the FD may be disengaged using the cyclic FD STBY button.
Continue flight, using the FD modes already engaged as required. However, use the cyclic FD STBY button to disengage modes when required. When disengaged FD is no longer available.
SINGLE COLLECTIVE AUTOPILOT FAILURE

1(2) COLL FAIL

- Aural Message
- Collective FD mode annunciator amber
 (if a coupled collective mode active)

Collective axis of AP1(2) failed, collective reverts to uncoupled

- Manually control collective
- Deselect and reselect associated 1(2) AP pushbutton on Autopilot Controller

If fault clears

- Continue flight
 Loss of redundancy of collective modes

If 2(1) COLL FAIL appears

- Continue flight
 Collective modes available uncoupled only
 Collective Safety Fly Up Function not available

DUAL COLLECTIVE AUTOPILOT FAILURE

1-2 COLL FAIL

- Aural Message
- Collective FD mode annunciator amber
 (if a coupled collective mode active)

Collective axis failure of both AP1 and AP2

- Manually control collective

Collective modes available uncoupled only.
Collective Safety Fly Up Function not available

- Continue flight
MAU FAILURE WITH FD ENGAGED

For on-side MAU failure on the selected PFD the FD modes ALT, VS and IAS will disengage, with a chime. Follow procedure below for FD action and refer to page 82 for complete MAU failure procedure.

- Reduce speed to 140 KIAS, level flight, or 100 KIAS and 1000fpm in climb
- Below 500ft AGL fly manually
- Re-engage FD modes as required
- Compare frequently PFD data with STANDBY indicator.

CAUTION
In case of MAU 1(2) failure, do not use electrical and hydraulic synoptic page information

1(2) MAU
1(2) ADS FAIL
1(2) AP FAIL

PFD message combined with CAS Cautions and disengagement of FD modes ALT, IAS, VS + Audio Chime and loss of:

- Airspeed
- Altitude
- Vertical Speed

Data on Left (Right) PFD indicators

Multiple CAS cautions illuminate, but those which affect FD functioning are:

1(2) AP FAIL page 37
1(2) ADS FAIL page 38
AFCS DEGRADED page 40a

- On RCP move ADS switch to non failed ADS
- Continue flight attentive
- Compare frequently PFD data with STANDBY indicator.

AFCS

Emerg-Malfunc Page 40d Rev. 21
AVIONIC SYSTEMS

PRIMARY OR/AND MULTIFUNCTIONAL FLIGHT DISPLAY UNIT FAILURE

Loss of either PFD or MFD will automatically configure remaining display to Composite mode. FD, if engaged and selected PFD fails, remains engaged on the same reference as PFD.

- Confirm no chime sound and FD mode green captions are present in Composite mode.
- Continue flight using composite mode.

- If failed screen becomes intermittent it can be powered down by switching associated RCP switch to functioning display.

Note

If failed screen returns valid, it can be restored by switching associated RCP switch to functioning display and back to NORM.

Note

MFD menu bar not functional if PFD in composite mode and MFD returns valid.

If subsequent loss of display in Composite mode FD, if engaged, disengages with chime.

- If Copilot displays failed and Left pilot flying
- Right pilot take control of aircraft
- FD can be re-engaged (on right pilot side)

Note

When using Standby instrument the correct Vne must be determined from the Vne placard.

- If Pilot displays failed and Right pilot flying
- If during SAR mission
- Left Pilot take control of aircraft
- FD can be re-engaged (on left pilot side)

- If single pilot
- Revert to Standby instrument
- Land as soon as practicable

Reversion Control Panel

Note

When using Standby instrument the correct Vne must be determined from the Vne placard.

- If Copilot displays failed and Left pilot flying
- Right pilot take control of aircraft
- FD can be re-engaged (on right pilot side)
DISPLAY UNIT OVERHEATING

1(2)(3)(4) DU OVHT
Associated display overheat
Expect format to be distorted or disappear
- Increase cockpit ventilation if possible
If DU fails, the remaining associated display automatically reverts to Composite mode

DISPLAY UNIT DEGRADED

1(2)(3)(4) DU DEGRADED
Possible 1(2)(3)(4) DU on associated display unit
On associated display unit possible misleading/loss graphics data.

On Ground
- Shut down aircraft for maintenance action

In flight
- Revert unaffected DU to Composite Mode by switching associated RCP switch to functioning DU

ADS FAILURE

1(2) ADS FAIL
Disengagement of some FD modes (ALT, ALTA, IAS, VS) + Audio Chime
(if FD engaged and on side ADS failure on selected PFD)
and loss of:
- Airspeed
- Altitude
- Vertical Speed
- Data on Left (Right) PFD indicators
Associated ADS system failure

- On RCP move ADS switch to non failed ADS

ADS1(2) illuminates on both attitude indicators to highlight PFD’s are using the same data source
- Re-engage FD modes as required
- Compare frequently PFD IAS data with STANDBY indicator.
AHRS FAILURE

1(2) AHRS FAIL

AVIONIC FAULT

1(2) AP FAIL

AFCS DEGRADED

+ Aural message

and loss of attitude, heading and slip skid data on Left (Right) PFD

Associated AHRS failure (and subsequent 1(2) AP failure)

If FD remain engaged

On-side AHRS failure on non selected PFD

- Uncouple FD unless in approach, missed approach, approach and departure to/from hover, hover and SAR mission

- On RCP move AHRS switch to non failed AHRS

AHRS 2(1)

illuminates on attitude indicator to highlight both attitude indicators are using the same AHRS data

- Continue Flight

- Compare frequently PFD attitude and heading with STANDBY

AURAL WARNING SYSTEM FAILURE

AWG FAIL

Aural warning system failure. Loss of aural warning

- Continue flight monitoring CAS system as aural warning does not function

Rev. 15

Emerg-Malfunc Page 43
AVIONIC FAULT

Loss of redundancy in avionic system

On ground
- Shut down aircraft for maintenance action

In flight
- Land as soon as practicable
 being aware avionic system has lost redundancy

MODULAR AVIONICS UNIT OVERHEAT/FAIL

1(2) MAU OVHT

Associated MAU overheat

If MAU fails be aware of the following:

If 1(2) MAU
message displayed on PFD combined with multiple CAS
cautions being generated then MAU 1(2) has failed, carry
out the following essential actions before continuing
to the list of cautions:

- Continue flight attentive
- On RCP move ADS switch to not failed ADS
- Reduce speed to 140 KIAS, level flight,
or 100 KIAS and 1000fpm in climb
- Below 500ft AGL fly manually
- Compare frequently PFD data with STANDBY indicator.

1 MAU
message displayed on PFD

CAS Messages displayed

AVIONIC FAULT page 44
1 AP FAIL page 37
AFCS DEGRADED page 40a
1 ADS FAIL page 42
1 FMS FAIL page 47
1 PITOT FAIL (if 1 PITOT HEATER switch OFF) page 75
FDR FAIL page 46

Procedure continues on next page
MODULAR AVIONICS UNIT OVERHEAT/FAIL (CONT)

Secondary engine parameters not valid (amber dashed):
- MGB OIL TEMP, MGB OIL PRESS
- 1 HYD OIL TEMP, 1 HYD OIL PRESS
- 1 ENG OIL TEMP, 1 ENG OIL PRESS
- 1 FUEL PUMP, MAIN BUS 2 VOLT
- ESS BUS 1 VOLT, DC GEN 1 AMP,
- NON ESS BUS 1, AUX BATTERY AMP

Loss of redundancy in backup engine parameters N°1 engine
Loss of redundancy in monitor warning functions N°1
Loss of redundancy of MCDU 1 Primary Radio Control

CAS Cautions NOT Available
CAS Advisories NOT Available
- 1 ENG OIL TEMP
- EMERG LDG PRESS
- MAIN BATT OFF
- EXT PWR DOOR
- 1 PITOT HEAT OFF
- 1 WOW FAIL
- 1 MCDU OVHT
- 1 MAU OVHT
- 1 ECL FAIL
- 1 ECL POS
- 1 FUEL HEATER
- 1 FUEL ICING

If MAU 2 fails

2 MAU message displayed on PFD

CAS Messages displayed:
- AVIONIC FAULT page 44
- 2 AP FAIL page 37
- AFCS DEGRADED page 40a
- 2 ADS FAIL page 42
- 2 FMS FAIL page 47
- AWG FAIL page 44
- GPS FAIL page 47
- 2 PITOT FAIL (if 2 PITOT HEATER switch OFF) page 75

Secondary engine parameters not valid (amber dashed):
- IGB OIL TEMP, TGB OIL TEMP
- 2 HYD OIL TEMP, 2 HYD OIL PRESS
- 2 ENG OIL TEMP, 2 ENG OIL PRESS
- 2 FUEL PUMP, MAIN BUS 1 VOLT
- ESS BUS 2 VOLT, DC GEN 2 AMP,
- NON ESS BUS 2, MAIN BATTERY AMP

Loss of redundancy in backup engine parameters N°2 engine
Loss of redundancy in monitor warning functions N°2
Loss of redundancy of MCDU 2 Primary Radio Control

CAS Cautions NOT Available
CAS Advisories NOT Available
- 2 ENG OIL TEMP
- TGB OIL TEMP
- IGB OIL TEMP
- AUX BATT OFF
- 2 PITOT HEAT OFF
- 2 WOW FAIL
- 2 MCDU OVHT
- 2 MAU OVHT
- 2 ECL FAIL
- 2 ECL POS
- 2 FUEL HEATER
- 2 FUEL ICING

In case of MAU 1 failure, do not use electrical and hydraulic syn-optic page information.

In case of MAU 2 failure, do not use electrical and hydraulic syn-optic page information.
MULTIFUNCTION CONTROL DISPLAY UNIT OVERHEATING

1(2) MCDU OVHT
Associated MCDU overheat
- Expect keyboard non functioning and/or display to be distorted or disappear
- Increase cockpit ventilation if possible
- Use radio tuning function with CCD on PFD

SYSTEM CONFIGURATION FAILURE

SYS CONFIG FAIL
Hardware or software configuration problem (displayed on ground only)
- Maintenance action

VALIDATE CONFIGURATION

VALIDATE CONFIG
Hardware or software changed, configuration validation operation required (displayed on ground only)
- Select SYSTEM on MFD SYS CONFIG page press ENTER to validate configuration
 - If caution remains
 - Maintenance Action

FLIGHT DATA RECORDER FAILURE

FDR FAIL
Flight Data Recorder failed
- On ground
 - Refer to minimum equipment list
- In flight
 - Continue flight

Emerg-Malfunc Page 46
COCKPIT VOICE RECORDER FAILURE

- CVR FAIL
 - Cockpit Flight Recorder failed

 On ground
 - Refer to minimum equipment list
 - Continue flight

 In flight
 - Continue flight

FLIGHT MANAGEMENT SYSTEM FAILURE

- 1(2) FMS FAIL
 - Failure of flight management system. FMS navigation not available
 - Continue flight
 - Check that the FMS is providing the required navigation accuracy.
 Whenever required revert to other navigational sources

GPS FAILURE

Single GPS system

- GPS FAIL
 - GPS total system failure
 - FMS navigation loss of redundancy. Groundspeed references not available
 - Continue flight
 - HOV, MOT, TDH, TU and WTR modes not available

Double GPS system

- 1-2 GPS FAIL
 - HOV, MOT, TDH, TU and WTR modes, if engaged, disengage (with chime) after 30 seconds

Note

PRAIM is not available following GPS FAIL (single system) or GPS 2 FAIL (double system)

FMS/GPS MISCOMPARE

- 1(2) FMS/GPS MSCP
 - Miscompare between FMS and GPS position data.
 - Continue flight
 - Be aware of possible inaccuracy in either FMS or GPS position data.
 Whenever required revert to other navigational sources
FMS/GPS MISCOMPARE UNAVAILABLE

FMS/GPS MSCP UNAVL.

FMS/GPS miscompare function not available due to FMS or GPS data invalid

- Continue flight
- Be aware position accuracy checking not available.
Whenever required revert to other navigational sources

COMMUNICATION SYSTEM

VHF OVERHEAT

1(2) VHF COM OVHT

Associated radio transmitter overheat

- Minimise operation if possible

AUDIO PANEL FAILURE

1(2)(3)(4)(5)(6)(7)(8) AUDIO FAIL

Associated audio panel system failed

- Revert to back up ICS on audio panel to communicate with crew and transmit on failed side VHF only.

CAUTION

When Audio Panel 1/2 has been reverted to back-up mode audio tones and voice warnings cannot be heard by on side crew.

Note

Audio panel identification: 1-Copilot, 2-Pilot, 3-Hoist Operator, 4-Cabin Operator (if installed), 5-2nd Cabin Operator (if installed), 6-3rd Cabin Operator (if installed) 7-8 Reserved

MRC OVERHEAT

1(2) MRC OVHT

Associated Radio/Nav modular system overheat

- Continue flight being aware that Radio or Nav system may malfunction.
ELECTRICAL

SINGLE DC GENERATOR FAILURE

1(2) DC GEN

Associated DC generator failure

- If **BUS TIE OPEN** caution illuminated
 - 1(2) GEN load less than 3%
 - Reset BUS TIE and set ON or increase electrical load on associated MAIN BUS
 - Continue flight

On failed generator
- OFF then ON
 - If caution remains
 - Switch OFF associated generator.
 - Continue flight
 - Power is supplied by remaining generator.
 - NON ESS BUS 1 & 2 lost (See Note below)
 - Monitor GEN load on MFD. Reduce electrical load if limit exceeded

DC GENERATOR OVERHEAT

1(2) DC GEN HOT

Associated DC generator overheat

On affected DC generator
- Switch OFF generator
- Continue flight
 - Power is supplied by remaining generator.
 - NON ESS BUS 1 & 2 lost (See Note below)

NOTE

Services lost for DC NON ESS BUS 1 & 2 failure

<table>
<thead>
<tr>
<th>DC NON ESS BUS 1</th>
<th>DC NON ESS BUS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABIN VENT</td>
<td>ECS (CABIN)</td>
</tr>
<tr>
<td>COCKPIT VENT (CPLT)</td>
<td>EXT/SPKR POWER</td>
</tr>
<tr>
<td>CPLT W/WIPE</td>
<td></td>
</tr>
<tr>
<td>ECS (COCKPIT)</td>
<td></td>
</tr>
<tr>
<td>FUEL DRAIN VALVE</td>
<td></td>
</tr>
<tr>
<td>STEP LIGHT</td>
<td></td>
</tr>
</tbody>
</table>

Rev. 7 Emerg-Malfunc Page 49
DC GENERATOR OVERLOAD
(EPIC Phase 5 or later)

1(2) GEN OVLD
Associated 1(2) DC generator in overload condition
(above 155% for more than 45 seconds)

- Reduce electrical load on associated generator
to within green range
- Continue flight

MAIN BATTERY OFF

MAIN BATT OFF
Failure of MAIN battery to MAIN BUS 1
- Confirm BATTERY MAIN switch ON
- Continue flight being aware
MAIN BATTERY not being charged
by MAIN BUS 1

Note
When external power is connected the batteries are automatically disconnected and the MAIN BATT OFF and AUX BATT OFF cautions illuminate.

AUXILIARY BATTERY OFF

AUX BATT OFF
Failure of AUX battery to MAIN BUS 2
- Confirm BATTERY AUX switch ON
- Continue flight being aware
AUX BATTERY not being charged
by MAIN BUS 2

Note
When external power is connected the batteries are automatically disconnected and the MAIN BATT OFF and AUX BATT OFF cautions illuminate.
LOSS OF MAIN AND/OR AUXILIARY BATTERY SUPPLY

BATT OFF LINE
Failure of MAIN and/or AUX battery connection to ESS BUS
- Confirm BATTERY MASTER switch ON
- Continue flight being aware MAIN and/or AUX battery not connected to ESS BUS

Note
When external power is connected the batteries are automatically disconnected and the MAIN BATT OFF and AUX BATT OFF cautions illuminate.

BUS TIE OPEN

BUS TIE OPEN
BUS TIE has been requested to close (either manually by pilot selecting BUS TIE switch to ON, or automatically due to a DC GEN failure) but BUS TIE remains OPEN
- Reset BUS TIE and set to ON
If caution remains connection of the MAIN BUS 1 and 2 not functioning.
- Continue flight

CAUTION
A subsequent DC Generator failure will cause loss of associated MAIN BUS as the BUS TIE will remain open.
DC MAIN BUS FAILURE

DC BUS FAIL
DC MAIN BUS 1 and/or 2 fault detected

If no generator cautions
- BUS TIE switch reset then AUTO
If caution remains
- Continue flight, be aware of services not available
(See page 52a for services lost when BUS not available)

If + 1(2) DC GEN caution illuminated
- DO NOT reset BUS TIE

If 1 GEN fail
- MAIN BUS 1 lost,
 MAIN BATT OFF caution illuminated
- Continue flight, be aware of services not available.
 NON ESS BUS 1 & 2 lost
 (See next page for services lost when BUS not available)

If 2 GEN fail
- MAIN BUS 2 lost,
 AUX BATT OFF caution illuminated
NOTE

<table>
<thead>
<tr>
<th>Services lost:</th>
<th>Services lost:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC MAIN BUS 1</td>
<td>DC MAIN BUS 2</td>
</tr>
<tr>
<td>ADM 1</td>
<td>AUTO TRIM</td>
</tr>
<tr>
<td>ANTI-COLL LIGHT</td>
<td>BAGGAGE COMPT LIGHT</td>
</tr>
<tr>
<td>CARGO HOOK RELEASE</td>
<td>CABIN LIGHT</td>
</tr>
<tr>
<td>CLOCK CPLT</td>
<td>COCKPIT/CABIN HEATER</td>
</tr>
<tr>
<td>COCKPIT CPLT LIGHT</td>
<td>COCKPIT VENT (PLT)</td>
</tr>
<tr>
<td>CPLT ICS</td>
<td>CPLT MFD</td>
</tr>
<tr>
<td>(CPLT ICS in back up mode)</td>
<td>DOME LIGHT</td>
</tr>
<tr>
<td>CPLT PFD</td>
<td>FD2</td>
</tr>
<tr>
<td>CSL ILLUM</td>
<td>HOIST LIGHT</td>
</tr>
<tr>
<td>FD1</td>
<td>MAU 1 (AUX POWER)</td>
</tr>
<tr>
<td>HOIST POWER</td>
<td>MCDU CPLT</td>
</tr>
<tr>
<td>HOIST CUTTER 1</td>
<td>MRC 2 (ADF & DME)</td>
</tr>
<tr>
<td>HOIST CONTROL</td>
<td>PLT W/WIPER</td>
</tr>
<tr>
<td>HUMS</td>
<td>PSU</td>
</tr>
<tr>
<td>HYD ELEC PUMP</td>
<td>RAD ALT 2</td>
</tr>
<tr>
<td>LINEAR ACTUATOR 1</td>
<td>SEARCH LIGHT CONTROL</td>
</tr>
<tr>
<td>MAU1 (PRI POWER)</td>
<td>SEARCH LIGHT POWER</td>
</tr>
<tr>
<td>MCDU PLT</td>
<td>STORM LIGHT</td>
</tr>
<tr>
<td>MRC 1 (NIM 1, NAV 1)</td>
<td>SUN LIGHT CONTROL</td>
</tr>
<tr>
<td>OVHD PANEL ILLUM</td>
<td>VENT CONTROL 2</td>
</tr>
<tr>
<td>PA</td>
<td>V/UHF</td>
</tr>
<tr>
<td>PFD CPLT CONTROL</td>
<td></td>
</tr>
<tr>
<td>PITOT 1 FAIL INDICATION</td>
<td></td>
</tr>
<tr>
<td>PITOT HEAT 1</td>
<td></td>
</tr>
<tr>
<td>RAD ALT 1</td>
<td></td>
</tr>
<tr>
<td>UTIL POWER</td>
<td></td>
</tr>
<tr>
<td>W/RADAR</td>
<td></td>
</tr>
<tr>
<td>XMSN OIL LEVEL SENSOR</td>
<td></td>
</tr>
<tr>
<td>DC NON ESS BUS 1</td>
<td>DC NON ESS BUS 2</td>
</tr>
<tr>
<td>CABIN VENT</td>
<td>ECS (CABIN)</td>
</tr>
<tr>
<td>COCKPIT VENT (CPLT)</td>
<td>EXT/SPKR POWER</td>
</tr>
<tr>
<td>CPLT W/WIPE</td>
<td></td>
</tr>
<tr>
<td>ECS (COCKPIT)</td>
<td></td>
</tr>
<tr>
<td>FUEL DRAIN VALVE</td>
<td></td>
</tr>
<tr>
<td>STEP LIGHT</td>
<td></td>
</tr>
</tbody>
</table>
This Page Left Blank Intentionally
ENGINE MALFUNCTIONS

COMPRESSOR STALL
If compressor stall occurs, carry out the following procedure

- Lower collective if possible
- Achieve safe OEI flight
- Monitor engine parameters on MFD for abnormal indications

If indications still abnormal
- ENG MODE switch, on stalled engine, select IDLE

If parameters within limits and engine responds normally
- Continue flight

If ITT decreases, NG stabilizes and other abnormal indications clear
- ENG MODE switch select FLT

On affected engine
- Carry out ENGINE SHUT DOWN IN AN EMERGENCY procedure Page 20

If engine responds normally
- Continue flight
- Carry out ENGINE SHUT DOWN IN AN EMERGENCY procedure Page 20
- Land as soon as practicable

If engine responds abnormally
- Land as soon as practicable

UNUSUAL ENGINE NOISE
If an unusual noise is detected and FOD damage suspected:

1. Attempt to establish which engine has problems by monitoring ITT, NG, Engine Oil Pressure, Engine Oil Temperature.
2. Switch affected ENG MODE to IDLE or select sequentially to determine the affected engine.
3. On affected engine carry out ENGINE SHUT DOWN IN EMERGENCY procedure, page 20.
4. Land as soon as practicable
ENGINE LIMIT EXCEEDANCE

1(2) ENG LIM EXPIRE

Associated engine has exceeded OEI 2.5 minute time rating

- Reduce power to below the OEI 2.5 minute rating (140%PI on PFD) (140%TQ, 775°C/105.4%, 102.4%NG on MFD)

- Continue flight respecting engine ratings

ENGINE OIL TEMPERATURE

1(2) ENG OIL TEMP

Associated engine oil temperature high (greater than 140°C)

On affected engine

- Confirm oil temperature on MFD

If oil temperature normal

If oil temperature between 140°C and 145°C

- Reduce power to 60%
- Continue for maximum duration of 30 minutes

If oil temperature remains high

- Achieve safe OEI flight

On affected engine

- Shut down engine using ENGINE SHUT DOWN IN EMERGENCY procedure page 20
- Land as soon as practicable

- Confirm oil temperature on MFD
ENGINE OIL PRESSURE HIGH

If engine oil pressure operates continuously above oil pressure limit carry out the following:

- Continue flight

On affected engine
- Monitor engine parameters on MFD

If oil pressure remains in red or engine parameters erratic

- Achieve safe OEI flight

On affected engine
- Shut down engine using ENGINE SHUT DOWN IN EMERGENCY procedure page 20

- Land as soon as practicable

ENGINE OIL CHIP DETECTOR

1(2) ENG CHIP

- Achieve safe OEI flight

On affected engine
- BUS TIE switch ON
- ENG MODE switch to IDLE

If engine indication stable

- Shut down engine as soon as operational conditions permit

- Land as soon as practicable

If any of the following occur:
- engine speed starts to decrease
- engine vibration increases
- engine oil pressure/temperature changes significantly

On affected engine
- Carry out ENGINE SHUTDOWN IN EMERGENCY procedure page 20

- Land as soon as practicable
ENGINE FIRE DETECTOR SYSTEM

1(2) FIRE DET

Associated engine fire detect system not operational

On affected engine:
- Monitor engine parameters for abnormalities and check for signs of fire

If fire suspected
- Achieve safe OEI flight

If all parameters normal
- Land as soon as practicable

On affected engine
- ENG MODE switch to OFF
- FUEL switch OFF
- Fuel PUMP OFF
- XFEED CLOSED
- Lift FIRE/ARM guard and press illuminated pushbutton
- set FIRE EXTING switch to BTL1

If signs of fire persist
- Set FIRE EXTING switch to BTL2

If signs of fire subside

- Land as soon as possible

If signs of fire persist

- LAND IMMEDIATELY

- Carry out EMERGENCY/CRASH SHUTDOWN procedure Page 20
ENGINE CONTROL LEVER

1(2) ECL FAIL

Associated engine ECL remote control beep not functioning

- Continue flight

If engine manual control required use manual lever

Note
If possible the torque of the manually controlled engine should be set at a torque level 10% below the other engine.

ENGINE CONTROL LEVER POSITION

1(2) ECL POS

Associated engine ECL out of flight position detent (only active when engine control in AUTO mode)

- Confirm ECL position and correct.

If caution remains

- Continue flight

On affected engine
- Monitor engine parameters.
Be aware of a possible reduction in engine response characteristics and power available

ENGINE MODE SELECT SWITCH

1(2) ENG MODE SEL

Associated engine MODE SELECT switch failure

- Continue flight

On affected engine
- Monitor engine parameters being aware that engine may need to be shut down using ECL
ENGINE POWER TURBINE OVERSPEED

1(2) OVSPD

Associated engine in overspeed condition

- Check PI and NF

If PI on both engines fluctuating and NF approx 110% on affected engine probable ‘run up’ has occurred

- Confirm engine in overspeed condition (CAS caution message)

On affected engine

- **ENG GOV** switch to MANUAL
- Control ECL using beep switch

- Land as soon as practicable

If NF approx 110% and/or TQ 0% the drive shaft has failed on affected engine

Note

If possible the torque of the manually controlled engine should be set at a torque level 10% below the other engine. (If PI on either/both engines is ITT or NG limited refer to TQ on MFD PWR PLANT page)

Note

Following engine drive shaft failure, NF may overspeed and reach the NF overspeed trip point (111%).

ENGINE ELECTRONIC CONTROL DATA

1(2) EEC DATA

Associated engine EEC system non critical fault

- Continue flight

On affected engine:

- On collective grip cycle ENG GOV switch AUTO-MANUAL-AUTO

If caution remains

- Confirm engine parameter readings with analogue sensors, avoid operation near engine limits if possible

AW139-QRH
DEGRADATION OF ENGINE CONTROL FUNCTIONS

1(2) DCU
Associated engine control function degraded

- Continue flight

On affected engine:
- Monitor engine parameters and compare with analogue values
- Avoid operating at engine limits if possible

ENGINE HOT START

1(2) HOT START
Associated engine ITT limits exceeded during start

On ground

On affected engine
- ENG Mode switch select OFF
- ECL move to OFF
- ENG FUEL switch select OFF
- Carry out Dry Motoring Proc.
 Normal Proc. page 36
- Shut down aircraft

In flight

On affected engine
- Maintain safe OEI flight
- ENG Mode switch select OFF
- ECL move to OFF
- FUEL PUMP switch select OFF
- ENG FUEL switch select OFF
- Carry out Dry Motoring Proc.
 Normal Proc. page 36

TORQUE LIMITER

1(2) TQ LIMITER
Associated engine torque limiter system not functioning

- Continue flight

On affected engine:
- For inconsistent TQ indication or invalid TQ
 select analogue reading on MFD

If TQ Limiter not enabled

- Do not select TQ Limiter
- Respect engine limits manually.

If TQ Limiter enabled

- Respect engine limits manually.

Note
The analogue sensors are selected from MFD PWR PLANT page, select ANALOG using Cursor Control Device.

Rev. 16 Emerg-Malfunc Page 59
INTER TURBINE TEMPERATURE LIMITER

1(2) ITT LIMITER
Associated engine ITT limiter not functioning
- Continue flight
- Set LD-SH switch to TORQUE
On affected engine:
- Select analogue ITT reading on MFD
- Avoid operating near engine limits

ENGINE POWER TURBINE OVERSPEED DETECT FAILURE

1(2) OVSPD DET
Associated engine NF overspeed detection system not operational
- Continue flight
On affected engine:
- Be aware than NF overspeed protection system will not function at the correct NF speed in the event of an NF overspeed.

FUEL FILTER BY-PASS

1(2) FUEL FILTER
Fuel filter blockage, impending bypass condition
On affected engine
- Monitor engine for possible reduction in power available
- Land as soon as practicable
FUEL ICING

1(2) FUEL ICING
Associated fuel temperature less than 5°C, possible fuel heater malfunction and fuel icing

On ground
- Do not take off if caution does not extinguish as engine oil temperature increases and

1(2) FUEL HEATER caution illuminates

In flight
- Monitor engine for possible reduction in power available

If 1(2) FUEL FILTER caution illuminates, possible filter blockage due to ice
- Land as soon as practicable

FUEL HEATER

1(2) FUEL HEATER
Associated fuel temperature greater than 74°C or fuel temperature less than 5°C with associated engine oil temperature greater than 82°C. Possible fuel heater malfunction. (Caution only active with associated engine running)

- Continue flight

On affected engine
- Monitor engine for possible reduction in power available
or 1(2) FUEL ICING caution.
ENGINE AND ROTOR PARAMETERS MISCOMPARE

1(2) NF MISCOMPARE
or
1(2) NG MISCOMPARE
or
1(2) ITT MISCOMPARE
or
1(2) TQ MISCOMPARE
or
NR MISCOMPARE

Associated parameter EEC and analogue backup data comparison discrepancy
- Continue flight
On affected parameter
- Confirm correct value with analogue back up parameter

The MISCOMPARE caution is generated when comparison with backup parameter exceeds the following values:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>3%</td>
</tr>
<tr>
<td>NG</td>
<td>3%</td>
</tr>
<tr>
<td>ITT</td>
<td>50°C</td>
</tr>
<tr>
<td>TQ</td>
<td>5%</td>
</tr>
<tr>
<td>NR</td>
<td>3%</td>
</tr>
</tbody>
</table>

Note
The analogue sensors are selected from MFD PWR PLANT page, menu selection using Cursor Control Device.

ENGINE ANALOG SENSOR FAILURE

ENG ANALOG FAILURE

Failure of an analogue parameter
- Continue flight

- Select analogue sensor from MFD PWR PLANT page menu, select ANALOG using Cursor Control Device.
- Note which analogue parameters have failed.
- Deselect ANALOG sensors to return display to digital values

Be aware that the MISCOMPARE caution for the failed parameters will be inoperative
ENGINE IN FLIGHT RESTART PROCEDURE

If an engine flames out or is shutdown during flight and if there is no indication of a mechanical malfunction or engine fire, the engine may be restarted.

Note
If, after a double engine failure, ENG 2 is to be started first set BUS TIE to ON.

STARTING MALFUNCTIONS AND ASSOCIATED ABORT ACTIONS

CAUTION
Failure to follow the appropriate Abort Procedure may cause damage to the engine.

Monitor engine start and if any of the following occur:
— light up is not within 10 seconds of ENG MODE switch to IDLE
— abnormal noise heard
— ITT increases beyond engine limits (HOT START caution illuminated)
— engine hangs (stagnation in NG below 54%)
— engine starter fails to disengage by 49% NG

shut down engine by:
1. ENG MODE switch — OFF
2. ECL — OFF
3. FUEL PUMP — OFF
4. ENG FUEL switch — OFF

Note
Observe the igniter and starter generator duty cycle limitations.

RESTARTING PROCEDURE

CAUTION
During starter activation AP1 may disengage

1. Airspeed — Less than 120 KIAS
1a. ECL — Confirm FLIGHT
2. ENG Fuel switch — ON - Fuel valve indicator vertical
3. FUEL PUMP — ON - FUEL PUMP caution not illuminated, check pressure
4. MFD display — Confirm PWR PLANT page
5. ENG MODE switch — Below 15000ft Hp select IDLE
— Above 15000ft Hp select IDLE when NG at 0%

Note
It is recommended to start the engine to IDLE, if necessary, it is possible to start to FLIGHT by setting the ENG MODE switch directly to FLT.
6. Gas Producer (NG) — Note increasing and START legend displayed.
7. Engine temperature (ITT) — Note increasing and IGN legend displayed.
8. Engine oil pressure — Confirm rising.
9. Engine starter — Disengaged by 49% NG.
10. Engine power turbine speed (NF) — Confirm stabilized to IDLE speed below 100%

Note
If the engine was started directly to FLT the NF will stabilize at 100% with rotor speed.

11. ENG MODE switch — FLT
12. Engine parameters — Confirm within limits and matched with other engine.

ENGINE MANUAL STARTING

It is recommended that engine start be carried out in AUTO mode when possible. If a MANUAL start is necessary carry out the following procedures.

MANUAL STARTING MALFUNCTIONS AND ASSOCIATED ABORT ACTIONS

CAUTION
Failure to follow the appropriate Abort Procedure may cause damage to the engine.

Monitor engine start and, if any of the following occur:

— light up is not within 10 seconds of ECL starter pushbutton engagement
— abnormal noise heard
— ITT increases beyond engine limits (HOT START caution illuminated)
— engine hangs (stagnation in NG below 54%) and NG cannot be accelerated with movement of ECL
— engine starter fails to disengage by 49% NG

shut down engine by:

1. ECL — OFF position
2. ENG MODE switch — OFF
3. FUEL PUMP — OFF
4. ENG FUEL switch — OFF

Note
Observe the igniter and starter generator duty cycle limitations.
ENGINE MANUAL STARTING ON GROUND PROCEDURE

Engine manual starting, on the ground, should only be carried out if it is essential to move the aircraft, for example from a helideck to allow access to other aircraft.

It is necessary, however, to have the other engine running in AUTO mode to help control rotor speed.

Following an aborted start shutdown, perform a Dry Motoring Procedure before restarting. See Lims-Norm-Perf page 36.

MANUAL START PROCEDURE

The servicable engine must be started first and MPOG established.

1. MFD display — Confirm PWR PLANT page
2. ECL — OFF on required engine
3. ENG GOV — MANUAL on required engine (Confirm MAN legend on PI and TQ indicators)
4. ENG Fuel switch — ON - Fuel valve indicator vertical
5. FUEL PUMP — ON - FUEL PUMP caution not illuminated, check pressure
6. ENG MODE switch — Select IDLE
7. ECL starter pushbutton — Push and release, START and IGN legends displayed
8. Gas Producer (NG) — Note increasing
9. ECL — Advance to FLIGHT, and beyond if required, when NG greater than 15% and ITT below 200°C (26%)
10. Engine temperature (ITT) — Confirm increasing
11. Engine oil pressure — Confirm rising.
12. Engine starter — Verify disengaged when NG above 49% and START and IGN legends extinguished
13. Gas producer (NG) — Confirm stabilized at 68% or above.

Note

If NG hangs below 68%, advance ECL beyond FLIGHT to accelerate to 68% NG then return to FLIGHT.

CAUTION

In manual mode the ECL must be advanced to adjust engine power. This should be carried out using the ECL beep switch. It is recommended that the manual engine be set to a torque 10% lower that the other engine.
ENGINE MANUAL IN FLIGHT RESTART PROCEDURE

CAUTION
During starter activation AP1 may disengage

1. MFD display — Confirm PWR PLANT page
2. ECL — OFF on required engine
3. ENG GOV — MANUAL on required engine (Confirm MAN legend on PI and TQ indicators)
4. ENG Fuel switch — ON - Fuel valve indicator vertical
5. FUEL PUMP — ON - FUEL PUMP caution not illuminated, check pressure
6. ENG MODE switch — Below 15000ft Hp select IDLE when NG below 20% — Above 15000ft Hp select IDLE when NG at 0%
7. ECL starter pushbutton — Push and release, START and IGN legends displayed.
8. Gas Producer (NG) — Note increasing
9. ECL — Advance to FLIGHT, and beyond if required, when NG greater than 15% and ITT below 200°C (26%)
10. Engine temperature (ITT) — Confirm increasing
11. Engine oil pressure — Confirm rising.
12. Engine starter — Verify disengaged when NG above 49% and START and IGN legends extinguished
13. Gas producer (NG) — Confirm stabilized at 68% or above.

Note
If NG hangs below 68%, advance ECL beyond FLIGHT to accelerate to 68% NG then return to FLIGHT.

CAUTION
In manual mode the ECL must be advanced to adjust engine power. This should be carried out using the ECL beep switch. It is recommended that the manual engine be set to a torque 10% lower than the other engine.
FUEL SYSTEM

FUEL LOW

1(2) FUEL LOW

On affected tank fuel contents below 92kg

- Check fuel contents and XFEED if required (see Note)

- Land as soon as practicable (within 20 minutes)

Note

If the XFEED is open and a FUEL PUMP is OFF, the tank with FUEL PUMP OFF, not supplying the engines, will have a maximum level of unusable fuel of 228 kg. The unusable fuel level value will change to grey to indicate the tank is no longer supplying fuel.

FUEL PRESSURE LOW

1(2) FUEL PUMP

Associated fuel pressure low (less than 0.6 bar)

- Confirm XFEED opens automatically
- Switch OFF associated pump

If fuel pressure not recovered.
- Possible fuel leak,
 - Close FUEL XFEED
 - Continue flight

If fuel pressure recovered.
- Continue flight
- Be attentive for signs of fuel leak or engine loss of power.

Note

When cross feeding, the tank with pump off, NOT supplying the engines, will have a maximum quantity of unusable fuel of 228 kg. This unusable fuel level value will change to grey to indicate the tank can no longer supply fuel.

Close X-FEED to restore the availability of up to 228 kg of fuel. Engine operation, in suction mode, is assure and FUEL pressure, on MFD, is invalid displaying amber dashed. Avoid abrupt aircraft manoeuvres.
DOUBLE FUEL PUMP FAILURE

1-2 FUEL PUMP

Fuel pressure low (less than 0.6 bar) in both fuel systems

- Select XFEED CLOSED
- Switch OFF PUMP 1 and PUMP 2
- Land as soon as practicable

Note

Engine operation, in suction mode, is assured and FUEL pressure, on MFD, is invalid displaying amber ‘0’ or dashed. Avoid abrupt aircraft manoeuvres.

FUEL CONTENTS GAUGING UNIT FAILURE

1(2) FCU FAIL

Associated FCU failure and possible loss or degradation of fuel contents indication

- Continue flight

If 1 FCU FAIL

If FUEL 2 below 228kg
- Monitor for 1 FUEL LOW caution when remaining fuel will be 92 kg

If FUEL 2 above 228kg
- FUEL 1 level can be taken as equal to FUEL 2 level

If 2 FCU FAIL

If FUEL 1 below 228kg
- Monitor for 2 FUEL LOW caution when remaining fuel will be 92 kg

If FUEL 1 above 228kg
- FUEL 2 level can be taken as equal to FUEL 1 level
FUEL LOW SENSOR FAILURE

1(2) FUEL LOW FAIL
Associated fuel low sensor failure
- Continue flight
 On affected system
 - Monitor fuel quantity, low level caution inoperative

FUEL PROBE FAILURE

1(2) FUEL PROBE
Associated fuel probe failure and degradation of fuel contents indication
- Continue flight

If 1 FUEL PROBE
If FUEL 2 below 228kg
- Monitor for 1 FUEL LOW caution when remaining fuel will be 92 kg
If FUEL 1 below 228kg
- Monitor for 2 FUEL LOW caution when remaining fuel will be 92 kg

If 2 FUEL PROBE
If FUEL 2 above 228kg
- FUEL 1 level can be taken as equal to FUEL 2 level
If FUEL 1 above 228kg
- FUEL 2 level can be taken as equal to FUEL 1 level

Note
Be aware that aircraft fuel quantity roll angle compensation will not be functioning.
FUEL CONTENTS GAUGING UNIT TEST SYSTEM FAILURE

1(2) FCU TEST FAIL

Associated fuel contents unit test system failed
(Only active on ground)

- Shut down aircraft for maintenance action

ABNORMAL FUEL CONSUMPTION

Monitor fuel quantity frequently. If an abnormal fuel consumption is confirmed, a fuel leakage may be present. Therefore, depending on remaining fuel quantity:

- Land as soon as possible
 or
- Land as soon as practicable
HYDRAULIC SYSTEM

HYDRAULIC PRESSURE LOW

1 HYD OIL PRESS + 1 HYD PUMP + 1 SERVO + EMERG LDG PRESS

or

2 HYD OIL PRESS + 2-4 HYD PUMP + 2 SERVO + HYD UTIL PRESS

Loss of pressure in associated hydraulic system (less than 163 bar)

- Confirm hydraulic pressure low (hydraulic synoptic page)

- Check hydraulic control panel,

 If HYD 2 PRESS illuminated
 On LDG GEAR panel
 - EMER DOWN pushbutton, lift guard and press
 - Land as soon as practicable

 being aware that fuel consumption will be increased due to lowered undercarriage

 If HYD 1 PRESS illuminated
 - Lower landing gear
 - Land as soon as practicable
 being aware that fuel consumption will be increased due to lowered undercarriage

Note

When EMER DOWN is selected the amber lights will remain illuminated even though the LDG GEAR is down. If the LDG GEAR lever is moved to the DOWN position the lights will extinguish.

NORMAL LANDING GEAR PRESSURE LOW

HYD UTIL PRESS

Low pressure in landing gear NORM hydraulic system

- Confirm low pressure in LDG NORM system.

- Lower LDG GEAR using normal procedure

If after 15 sec LDG GEAR not locked down
- EMER DOWN pushbutton, lift guard and press

- Continue flight
 being aware that fuel consumption will be increased due to lowered undercarriage
EMERGENCY LANDING GEAR PRESSURE LOW

EMER LDG PRESS

Low pressure in emergency landing gear hydraulic system

- Confirm low pressure in EMER LDG GEAR system.
- Lower landing gear using normal procedure
- Continue flight being aware that fuel consumption will be increased due to lowered undercarriage

HYDRAULIC FLUID OVERHEATING

1(2) HYD OIL TEMP

Associated hydraulic system overheat (greater than 134°C)

- Confirm hydraulic temperature and check HYD control panel
- Lower undercarriage on affected system
- Switch off system by moving SOV switch to CLOSE on HYD control panel
 - **HYD PRESS** and **SERVO** cautions illuminate
- Land as soon as practicable, being aware that fuel consumption will be increased due to lowered undercarriage

WARNING

If a **1(2) SERVO** caution has illuminated previously do NOT switch SOV to CLOSE on the 2(1) Hydraulic system since this will cause loss of control in the affected servo jack.

Note

With one hydraulic system SOV shut off, a subsequent drop of pressure in the other system will over-ride the SOV selection and reinstate pressure to the servo’s. In these conditions the SOV switch will not be automatically reset.
HYDRAULIC FLUID LEVEL LOW

1(2) HYD MIN

Associated system low hydraulic fluid level

- Confirm fluid level
 (hydraulic synoptic page)

If EMER LDG PRESS caution illuminated
- Lower landing gear using normal procedure
- Land as soon as practicable,
 being aware that fuel consumption will
 be increased due to lowered undercarriage

If HYD UTIL PRESS caution illuminated
- On LDG GEAR panel
 - EMER DOWN pushbutton, lift guard and press

Note
Loss of hydraulic fluid in system No2 will automatically close the Tail Rotor Shut Off Valve (TRSOV). This will be indicated on the hydraulic synoptic page. Once the TRSOV has operated the SOV No1 is inhibited.

Note
When EMER DOWN is selected the amber lights will remain illuminated even though the LDG GEAR is down. If the LDG GEAR lever is moved to the DOWN position the lights will extinguish.

HYDRAULIC PUMP 1, 2 OR 4 FAILURE

1(2)(4) HYD PUMP

Low pressure at pump outlet

- Confirm low pump pressure

If PUMP 1 low
- Lower landing gear using normal procedure
- Monitoring hydraulic pressure
- Land as soon as practicable,
 being aware that fuel consumption will be
 increased due to lowered undercarriage

If PUMP 2 or PUMP 4 low
- Continue flight
 No corrective action

HYD LDG GR

Rev. 16
Emerg-Malfunc Page 71
MAINTAIN IN MAIN OR TAIL ROTOR SERVO

1(2) SERVO

Main control valve seizure in one (or more) servo jacks

- Lower landing gear by normal procedure
- Land as soon as practicable
 being aware that fuel consumption will be increased due to lowered undercarriage

WARNING

Do NOT switch SOV to CLOSE on the UNAFFECTED system since this will cause loss of control in the affected servo jack.

Note
Loss of hydraulic fluid in system No2 will automatically close the Tail Rotor Shut Off Valve (TRSOV). This will be indicated by a caution on the CAS and a TRSOV closed indication on the hydraulic synoptic page. Once the TRSOV has operated the SOV No1 is inhibited.

NOSEWHEEL UNLOCKED (IN FLIGHT)

NOSE WHL UNLK

Nose wheel not locked in fore and aft direction

- Cycle NOSE WHEEL switch on LDG GEAR panel
 If caution remains
 - Do not raise landing gear
 - Continue flight being aware that fuel consumption will be increased due to lowered undercarriage
 - Avoid run on landing

Note
Landing gear retraction inhibited with NOSE WHL UNLK caution illuminated
PARK BRAKE MALFUNCTION

- **PARK BRK PRESS**

 No pressure in park brake system with PARK BRAKE lever in ON position

 - If park brake not required
 - Confirm park brake lever in OFF position
 - If park brake required
 - Pressurize system by ‘pumping’ pedal brakes

 If caution remains
 - **Continue flight**
 - being aware park brake may not hold aircraft when on ground

PARK BRAKE ON IN FLIGHT

- **PARK BRK ON**

 Park brake system pressurized

 - Confirm PARK BRAKE lever in off position
 - **Continue flight**

 CAUTION

 Do not carry out run on landing or taxi as park brake system may be pressurized

LANDING GEAR RETRACTED

- **LANDING GEAR** + Voice Warning

 Landing gear retracted when aircraft height is less than 150ft AGL

 - **Extend landing gear**
LANDING GEAR FAILS TO RAISE

Landing gear selected up but one or more amber lights remains illuminated

- Confirm landing gear circuit breakers in
- Check DOWN EMERG pushbutton not selected
- Cycle landing gear lever from UP to DOWN and allowing time for the landing gear to lock down and then select UP

If one or more amber lights remain illuminated
- Select landing gear DOWN
- Continue flight being aware that fuel consumption will be increased due to lowered undercarriage

Note
If undercarriage has been extended using the EMER DOWN then subsequent retraction is not possible.

Note
For OAT of -30°C and below undercarriage retraction time may double.
MISCELLANEOUS SYSTEMS

PITOT HEATER FAILURE

1(2) PITOT FAIL

- Exit icing conditions as soon as possible

PITOT HEATER OFF

1(2) PITOT HEAT OFF

- Select associated PITOT HEATER switches ON

AIRCRAFT NEVER EXCEED SPEED

Voice warning ‘AIRSPEED AIRSPEED’ and airspeed indication RED

- Confirm airspeed

- Reduce/maintain speed below Vne

AIRCRAFT NEVER EXCEED SPEED MISCOMPARE

VNE MISCOMPARE

- Continue flight respecting the lower VNE value.

- When convenient confirm, using the STANDBY ASI and placard, and the ambient atmospheric conditions which ADS VNE airspeed indication is correct.
WEIGHT ON WHEELS SWITCH FAILURE

1(2) WOW FAIL
Associated WOW switch failure

On ground
- Shut down aircraft for Maintenance action

In flight
- Continue flight being aware of system limitations (FUEL TEST and AHRS TEST not inhibited in flight)

Note
1(2) WOW FAIL caution may illuminate spuriously during slope take-off or landing procedure.

1 WOW FAIL to ground:
1 AHRS TEST function not inhibited in flight

2 WOW FAIL to ground:
2 AHRS TEST function not inhibited in flight
FUEL TEST function not inhibited in flight

Note
Illumination of the WOW FAIL caution, when the LDG GEAR is DOWN, will cause the LDG GEAR lever to be locked in the down position so subsequent retraction of the landing gear is not possible.

COCKPIT DOOR OPEN

A cockpit door not closed

On ground
- Close cockpit door before flight

In flight
- Close and lock cockpit door, if possible
 If not possible to close door
 - Reduce speed to below 100KIAS
 - Land as soon as possible and secure door

- Confirm which cockpit door not secure

COCKPIT DOOR

- Confirm which cockpit door not secure
CABIN DOOR OPEN

CABIN DOOR

A cabin door not closed

On ground
- Close cabin door before flight

In flight
- Reduce speed to 80 KIAS
- Confirm which cabin door is not secured
- Close and lock cabin door, if possible

 If not possible to close door

 - Land as soon as practicable and secure door

CAUTION

When opening or closing cabin door in flight hold door handle until door is at full travel and locked

BAGGAGE BAY DOOR OPEN

BAG DOOR

Baggage bay door not closed

On ground
- Close baggage door before flight

In flight
- Reduce speed to below 100KIAS
- Land as soon as possible and secure door

EXTERNAL POWER SOCKET DOOR OPEN

EXT PWR DOOR

External power socket door not closed

On ground
- Close external power socket door before flight

In flight
- Reduce speed to below 100KIAS
- Land as soon as practicable and secure door
VENT FAN FAILURE

VENT FAIL

Failure of the CREW and/or PAX (if fitted) vent fan

- Confirm, using Advisory indications, if fan has failed (not illuminated)

On failed vent fan
- Switch OFF
- Open windows if operating below 25 kts, MPOG, HIGE or HOGE

NOSE AVIONIC FANS FAILURE

VENT FAIL + NOSE FAN 1 OFF + NOSE FAN 2 OFF

(Caution triggered on ground only)

Failure of both nose avionic bay fans

- Shut down aircraft

ROTOR BRAKE FAIL

ROTOR BRK FAIL

Rotor brake system in one of the failure conditions noted:
- Brake pads not withdrawn
- With both engines OFF brake caliper not UP
- With an engine in FLT, brake caliper not DOWN
- With an engine in GI, brake caliper not DOWN
- Rotor brake lever not in OFF, one engine to FLT or in GI (displayed on ground only)

- Confirm, using ROTOR BRAKE panel, pressure and status of the brake caliper

On ground
- Shut down aircraft

In flight
- If caliper UP
- Land as soon as practicable
- If caliper DOWN
- Continue flight
HEATER FAILURE

HEATER FAIL

Heater system failure

- Switch HTR to OFF

If HEATER required for demist:

1. HTR — MAN
2. VENT CREW FAN — As required
3. TEMP CONTR — Control temperature manually using
 ± position on rotary switch.

COND FAILURE

FWD(AFT) COND FAIL

Crew(PAX) conditioner failure

- Switch OFF the COND/HTR and leave
 for minimum of 4 minutes.
 Switch NORM

If system fails again
- Switch OFF

CAUTION

Be aware that failure of a ventilation fan with the
COND system operative may cause the COND to
fail after several minutes, in which case switch
COND to OFF.

Rev. 15

Emerg-Malfunc Page 78a
This Page Left Blank Intentionally
PFD AND MFD DISPLAY MESSAGES

ATTITUDE DISPLAY FAILURE

loss of attitude data and slip skid indicator on associated attitude display

- On RCP move AHRS switch to other AHRS (1 = Copilot side, 2 = Pilot side)

 ![AHRS1(2)]

 illuminates on attitude indicator to highlight both attitude indicators are using the same source data

 - Compare frequently PFD attitude with STANDBY attitude indicator.

HEADING DISPLAY FAILURE

loss of heading data on associated HSI display

- On RCP move AHRS switch to other AHRS (1 = Copilot side, 2 = Pilot side)

 ![AHRS1(2) + MAG1(2) or DG1(2)]

 illuminates on PFD to highlight both attitude indicators are using the same source data

 - Compare frequently PFD heading with STANDBY Compass.
ADS FAILURE

Failure of ADS system

- On RCP move ADS switch to other ADS (1 = Copilot side, 2 = Pilot side)

ADS1(2) illuminates on attitude indicator to highlight both air data indicators systems are using the same source data

- Compare frequently PFD data with STANDBY indicator.

on affected indicators and loss of data on:
- Airspeed and/or
- Altitude and/or
- Vertical Speed displays on PFD

PFD/MFD MSGs
CAS WARNING AND CAUTION MESSAGE LIST DISCREPANCY

MAU 1 (MAU 2) CAS WARNING or CAUTION message list has discrepancies

- Pilot press “ENTER” key on CCD while ▲ symbol is displayed adjacent the caption to toggle between CAS LIST 1 and 2. Confirm which message(s) are giving the ‘MISCOMPARE’
MAU MESSAGE ON PFD

CAUTION

In case of MAU 1(2) failure, do not use electrical and hydraulic synoptic page information.

1(2) MAU message displayed on PFD without multiple CAS cautions being generated.

Associated MAU degraded.

- No pilot action

If 1(2) MAU message combined with multiple CAS cautions being generated then MAU1(2) has failed, carry out the following essential actions before continuing to the list of cautions:

- Continue flight attentive
- On RCP move ADS switch to non failed ADS
- Reduce speed to 140 KIAS, level flight, or 100 KIAS and 1000fpm in climb
- Below 500ft AGL fly manually
- Compare frequently PFD data with STANDBY indicator.

1 MAU failure will be associated with the following CAS cautions:

- AVIONIC FAULT page 44
- 1 AP FAIL page 37
- AFCS DEGRADED page 40
- 1 ADS FAIL page 42
- 1 FMS FAIL page 47
- 1 PITOT FAIL (only if 1 PITOT HEATER switch OFF) page 75
- FDR FAIL page 46

Procedure continues on next page.
MAU MESSAGE ON PDF (CONT)

and secondary power plant parameters not valid (amber dashed):
MGB OIL TEMP, MGB OIL PRESS
1 HYD OIL TEMP, 1 HYD OIL PRESS
1 ENG OIL TEMP, 1 ENG OIL PRESS
1 FUEL PUMP, MAIN BUS 2 VOLT
ESS BUS 1 VOLT, DC GEN 1 AMP,
NON ESS BUS 1, AUX BATTERY AMP
Loss of redundancy in backup engine parameters N°1 engine
Loss of redundancy in monitor warning functions N°1
Loss of redundancy of MCDU 1 Primary Radio Control
CAS Cautions NOT Available
1 ENG OIL TEMP
EMERG LDG PRESS
MAIN BATT OFF
EXT PWR DOOR
1 PITOT HEAT OFF
1 WOW FAIL
1 MCDU OVHT
1 MAU OVHT
1 ECL FAIL
1 ECL POS
1 FUEL HEATER
1 FUEL ICING

In case of MAU 1(2) failure, do not use electrical and hydraulic synoptic page information

2 MAU failure will be associated with the following CAS cautions:
AVIONIC FAULT page 44
2 AP FAIL page 37
AFCS DEGRADED page 40
2 ADS FAIL page 42
2 FMS FAIL page 47
AWG FAIL page 44
GPS FAIL page 47
2 PITOT FAIL (only if 2 PITOT HEATER switch OFF) page 75

Procedure continues on next page

CAUTION

Rev. 5

AWG-QRH

Emerg-Malfunc Page 82a
MAU MESSAGE ON PDF (CONT)

Continues from previous page

and secondary power plant parameters not valid (amber dashed):
IGB OIL TEMP, TGB OIL TEMP
2 HYD OIL TEMP, 2 HYD OIL PRESS
2 ENG OIL TEMP, 2 ENG OIL PRESS
2 FUEL PUMP, MAIN BUS 1 VOLT
ESS BUS 2 VOLT, DC GEN 2 AMP,
NON ESS BUS 2, MAIN BATTERY AMP
Loss of redundancy in backup engine parameters N°2 engine
Loss of redundancy in monitor warning functions N°2
Loss of redundancy of MCDU 2 Primary Radio Control

CAS Cautions NOT Available
2 ENG OIL TEMP
TGB OIL TEMP
IGB OIL TEMP
AUX BATT OFF
2 PITOT HEAT OFF
2 WOW FAIL
2 MCDU OVHT
2 MAU OVHT
2 ECL FAIL
2 ECL POS
2 FUEL HEATER
2 FUEL ICING

CAS Advisories NOT Available
LDG EMER DOWN
EXT PWR ON
PARK BRK ON
SEARCH LT ON

In case of MAU 1(2) failure, do not use electrical and hydraulic synoptic page information
DISPLAY UNIT GRAPHIC MALFUNCTION

1(2)(3)(4) DU on attitude indicator

On associated display unit, possible misleading/loss of graphics data.

- Revert unaffected DU to Composite Mode by switching associated RCP switch to functioning DU
2.5 MINUTE RATING MESSAGE ON PFD

- Reduce power to below the OEI 2.5 minute rating (140% PI on PFD)
 (140% TQ, 775°C, 102.4% NG on MFD) as soon as flight conditions permit

- Continue flight respecting engine ratings

DECISION HEIGHT CAPTION

- Action according to operational situation

RAD ALT height equal or lower than decision height (DH) setting

PFD/MFD MSGs
AHRS MISCOMPARE

- **ATT**, **PITCH**, **ROLL**, or **HDG**
on attitude indicator

Miscompare between AHRS 1 and 2 information.
(±5° Pitch, ±6° Roll, ±10° Heading)

- By comparison with Standby instrument establish which AHRS is providing correct data and switch to this on RCP, if required

ADS MISCOMPARE

- **ALT** and / or **IAS**
on altitude tape on airspeed tape

Miscompare between ADS 1 and 2 information.
(±150ft for ALT, ±20kts for IAS)

- By comparison with Standby instrument establish which ADS is providing correct data and switch to this on RCP, if required

NAV MISCOMPARE

- **LOC** on PFD HSI display

Miscompare between LOC Lateral and/or vertical deviation.

- Compare the Pilot and Copilot NAV indications to establish the correct data.
FLIGHT DIRECTOR FAILURE

No CAS Warning or Caution messages are generated to indicate FD malfunctions. However indication on both PFD displays indicate the state of the flight director system.

SINGLE FLIGHT DIRECTOR FAILURE

replaces green arrow above attitude indicator on PFD that has failed Flight Director

On-side flight director invalid, loss of redundancy

- Continue flight

DUAL FLIGHT DIRECTOR FAILURE

replaces FD arrow above attitude indicator on both PFD’s

loss of flight director bars and information

Both Flight Directors invalid

- Flight Director not available

SINGLE RAD ALT FAILURE WITH RHT (OR SAR MODES) ENGAGED

Message beside RAD ALT display. on both PFD’s

Rad Alt 2 (1) failed and automatic reconfiguration to functioning Rad Alt.
Message highlights both Rad Alt indicators are using the same source

- Continue flight attentive
Loss of Rad Alt redundancy
No effect on Rad Alt dependant modes functionality

CAUTION

When either RAD ALT fails, the LANDING GEAR CAS caution and associated audio message activate erroneously when the aircraft is above 150 ft AGL and the LDG GEAR is retracted.
DOUBLE RAD ALT FAILURE WITH RHT (OR SAR MODES) ENGAGED

- RAD
 Message replaces RAD ALT height information on both PFD’s
 RHT and SAR modes disengage with audio chime

- Failure of both RAD ALT systems

 - **Continue flight**
 - RAD ALT functioning is lost
 - RHT, TDH, TD, TU, MOT modes and ALVL not available
 - Collective Safety Fly Up function not available
 - MIN message is inactive
 - ‘CHECK HEIGHT’ aural warning inactive

Note
If RHT mode engaged, ALT will automatically engage 5 seconds after RAD failure indication.

CAUTION
When both RAD ALT’s fail, the 150ft aural warning message does not function and the LANDING GEAR caution will be displayed if the LDG GEAR is retracted, regardless of height.

RAD ALT MISCOMPARE WITH RHT (OR SAR MODES) ENGAGED

- RAD
 on RAD ALT display
 RHT and SAR modes, if engaged, disengages with audio chime

- Miscompare between MAU 1 and 2 RAD ALT information.
 (single RAD ALT) or RAD ALT 1 and 2 (dual RAD ALT)

 - **Compare the Pilot and Copilot RAD ALT indications and/or outside visual references to establish the correct data.**
 - **Continue flight**
 - RHT, TDH, TD, TU, MOT modes and Safety Fly-Up function not available while message displayed

Note
If RHT mode engaged, ALT will automatically engage 5 seconds after RAD failure indication.
VERTICAL TRACK ALERT CAPTION

on attitude indicator during VGP approach when RAD ALT height between Missed Approach Point (MAP) and MAP+100ft. This caption only appears when the MAP is higher than 150ft AGL. The VGP will disengage, with chime, at the MAP

Be aware that the ALVL mode will not engage

GROUND SPEED VELOCITY FAIL

Message below and to left of compass display

- Continue flight

HOV and SAR modes (except TD) not available

GROUND SPEED VELOCITY MISCOMPARE

(EPIC Phase 5 or later)

Message below and to left of compass display

- Compare PFD indications

- Continue flight

If fault on coupled side AHRS aircraft may be affected by drift in HOV or SAR modes
HEIGHT LIMIT CAPTION
(EPIC Phase 5 or later)

Message left of attitude indicator on both PFD's

Aircraft passed Safety Height and/or Ultimate Fly Up Limit. Safety Fly-Up function activated, if coupled

- Monitor height

OAT SENSOR MISCOMPARE
(EPIC Phase 5 or later)

OAT displayed in amber on PFD

Miscompare between the two Outside Air Temperature probes is 6°C or greater

- Continue flight
 Use OAT standby instrument
FMS MESSAGES

DEAD RECKONING (DR)

DR is an alerting (amber) annunciator. This annunciator is displayed when operating in the DR mode for longer than 2 minutes. The DR mode is defined as the loss of radio updating and all other position sensors (GPS).

DEGRADED (DGR)

DGR is an alerting (amber) annunciator. This annunciator is displayed when the FMS cannot guarantee the position accuracy for the present phase of flight due to sensor availability. Practically the annunciator appears when the EPU (estimated position uncertainty) is greater than RNP (required navigation performance). Default RNP is 1.0 for Departure and Arrival, 2.0 for en-route and 0.3 for approach.

Approved sensors for the different flight phases are indicated on the following table.

<table>
<thead>
<tr>
<th>Flight Phase</th>
<th>Approved Sensors (Navigation Mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPS</td>
</tr>
<tr>
<td>Departure or Terminal</td>
<td>X</td>
</tr>
<tr>
<td>Enroute</td>
<td>X</td>
</tr>
<tr>
<td>VOR/DME or VOR Approach</td>
<td>X</td>
</tr>
<tr>
<td>GPS Approach</td>
<td>X</td>
</tr>
<tr>
<td>NDB Approach</td>
<td>X</td>
</tr>
</tbody>
</table>

UNABLE RNP

If EPU (Estimated Position Uncertainty) show a value greater than the RNP (Required Navigation Performance) required for the current navigation phase (i.e. DGR message) a UNABLE RNP message will appear on the scratch pad and a MSG caption on the PFD.

Continue navigation using the GPS equipment or reverse to an alternate means of navigation appropriate to the route and phase of flight. When continuing to use GPS navigation, position should be verified every 15 minutes using another IFR-approved navigation system.
AW139-QRH

ROTOR AND TRANSMISSION

ROTOR SPEED SELECTOR

RPM SELECT

RPM Select switch malfunction

- **On Ground prior T-O**
 - If RPM below 102%
 - CAT A cannot be executed
 - If RPM at 102%
 - CAT A can be executed. Max flight speed 90KIAS

- **During CAT A Approach**
 - If RPM less than 102%
 - CAT A perf, in case of engine failure, cannot be assumed
 - In Cruise with RPM select at 100%

MAIN GEARBOX OVERTORQUE

XMSN OVTQ

- Transmission TQ limit exceeded, Take Off rating 5 min limit (either engine above 110%) or 2.5 Min OEI limit (160%)
- Confirm engine torque values

- If due to excessive power demand
 - Reduce collective until torque within limits, as soon as operational conditions permit

- If one engine in overtorque condition
 - Reduce collective until caption extinguishes
 - Confirm LD-SH switch selected to TORQUE

ROTOR XMSN

Rev. 20

Emerg-Malfunc Page 87

UNMAINTAINED COPY
FOR INFORMATION ONLY
Main Gearbox Chip Detector

- **MGB Chip Mast**
 or
- **MGB Chip Sump**

- Activate Chip Burner
 It is permitted to activate the Chip Burner up to 3 times to clear a chip.

If Chip caution clears
- Continue flight

If Chip caution remains
- Reduce power as soon as conditions permit
- Land as soon as practicable

CAUTION

A maximum of 3 chips can be cleared in one flight. On the 4th Chip caution *Land as soon as practicable*.

Note

- If MGB Chip Mast or MGB Chip Sump cautions illuminate when MGB Oil Press warning is illuminated, the Chip Burner must not be activated.

Main Gearbox Oil Filter

- **MGB Oil Filter**

 Main gearbox oil filter blockage and in bypass

 - Continue flight monitoring MGB oil pressure and temperature

Main Gearbox Oil Low

- **MGB Oil Low**

 Main gearbox oil level low. (caution only active with aircraft shut down and NR below 2%)

 - Replenish MGB oil before flight
MAIN GEARBOX INPUT BEARING TEMPERATURE

1(2) BRG TEMP

Associated MGB engine input bearing over temperature

- Reduce speed to safe OEI flight

- Land as soon as practicable

If **1(2) MGB OIL PRESS** caution illuminates

On affected engine

- Shut down using ENGINE SHUT DOWN IN EMERGENCY procedure page 20

- Land as soon as practicable

MAIN GEARBOX INPUT OIL PRESSURE

1(2) MGB OIL PRESS

Associated engine - MGB input oil pressure low, possible blockage in oil duct to engine - MGB input

- Reduce speed to safe OEI flight

- Land as soon as practicable

If **1(2) BRG TEMP** caution illuminates

On affected engine

- Shut down using ENGINE SHUT DOWN IN EMERGENCY procedure page 20

- Land as soon as practicable
INTERMEDIATE OR TAIL GEARBOX CHIP

- Activate CHIP BURNER
 It is permitted to activate the CHIP BURNER up to 3 times to clear a chip

 If CHIP caution clears
 - Continue flight

 If CHIP caution remains
 - Reduce power as soon as conditions permit
 - Land as soon as practicable

A maximum of 3 IGB or 3 TGB chips can be cleared in one flight. On the 4th CHIP caution Land as soon as practicable.

INTERMEDIATE OR TAIL GEARBOX OIL LOW

- Replenish oil before flight

INTERMEDIATE GEARBOX OIL TEMPERATURE HIGH

- Check IGB oil temperature

 If oil temperature normal
 - Continue flight monitoring oil temperature

 If oil temperature high or invalid
 - Reduce power as soon as operational conditions permit
 - Land as soon as possible
TAIL ROTOR GEARBOX OIL TEMPERATURE HIGH

TGB OIL TEMP

IGB oil temperature above limit (greater than 109°C)

- Check TGB oil temperature

If oil temperature normal

- Continue flight monitoring oil temperature

If oil temperature high or invalid

- Reduce power as soon as possible

- Land as soon as possible

GEARBOX CHIP DETECT UNIT MALFUNCTION

CHIP DET UNIT or **CHIP DET TEST**

Chip detect system malfunction

On ground

- Shut down aircraft

In flight

- Monitor transmission system parameters

- Land as soon as practicable

GEARBOX CHIP DETECTOR SENSOR FAILURE

CHIP MAST FAIL or **CHIP SUMP FAIL**

or **IGB CHIP FAIL** or **TGB CHIP FAIL**

Associated gearbox chip sensor failed

On ground

- Shut down aircraft

In flight

- Monitor associated gearbox parameters

- Land as soon as practicable
CAT B SINGLE ENGINE FAILURE PROCEDURES

CATEGORY B SINGLE ENGINE FAILURE IN HOVER (5 TO 10 FT)
1. Collective pitch — Maintain collective pitch setting or lower collective slightly if required to establish descent.
2. Touchdown — Increase collective to cushion landing as touchdown becomes imminent.
3. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to minimum. Apply wheel brakes as required.

CATEGORY B SINGLE ENGINE FAILURE ON TAKE OFF
If gross weight and flight path permit, takeoff and climb out may be continued. For a rejected take off carry out the following:
1. Collective pitch — Reduce as necessary to maintain rotor RPM if altitude permits.
2. Cyclic — Make a partial flare to reduce ground speed. Limit flare to 15° when close to the ground.
3. Collective pitch — Apply to cushion touchdown.
4. Landing — After touchdown centralize cyclic and simultaneously reduce collective to minimum.
5. Brakes — Apply wheel brakes to minimize ground roll.

SINGLE ENGINE FAILURE DURING CRUISE
1. Collective — Adjust as necessary to maintain rotor RPM and torque within limits.
2. Cyclic — Establish Safe OEI flight.
3. Collective — Re-adjust collective to minimize altitude loss by applying up to maximum OEI power.
4. Engine restart — Consider engine re-start if cause of initial failure has been determined and corrected. See ENGINE RESTART IN FLIGHT procedure page 63.
5. Engine — If engine restart fails or no attempt to restart is made carry out the ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20

CATEGORY B SINGLE ENGINE LANDING
1. Pre-landing checks — Establish normal approach and carry out pre landing checks.
2. Landing direction — Orientate the aircraft for an approach into the prevailing wind.
3. Initial point — During the approach, reduce airspeed gradually to arrive at a point 200ft above touchdown point with a rate of descent of no more than 500fpm. Initiate a deceleration to achieve 30 KIAS at 50ft. At 50ft rotate nose up to a maximum of 20° to decelerate.
4. Collective — Continue deceleration to running touchdown or hover. Use collective to cushion touchdown. Maximum nose up attitude on touchdown 15°.
5. Landing — After touchdown, centralize cyclic and reduce collective to minimum.
6. Braking — Apply wheel brakes, as required.
CAT A SINGLE ENGINE FAILURE PROCEDURES

When Take-Off or Landing is carried out from the left hand seat, the right hand pilot should call out rotor speed during the engine failure procedures.

IN HOVER (5 feet ATS) ALL PROCEDURES

1. Collective — Maintain collective pitch setting or lower collective slightly if required to land.
2. Touchdown — Increase collective to cushion landing as touchdown becomes imminent. Maximum permitted GS at touchdown 5 kts.
3. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG. Apply wheel brakes if necessary.
4. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
5. PARK BRAKE — As required.

RECOGNIZED IN CLIMB, PRIOR TO TDP (REJECTED TAKE-OFF) VERTICAL PROCEDURE RTO

1. Collective — Adjust collective gently to stop climb and establish descent. Maintain the rotor speed close to 100%NR.
2. Cyclic — Adjust pitch attitude as required to maintain position over the helipad.
3. Touchdown — At approximately 5-10ft ATS increase collective to cushion landing as touchdown becomes imminent. Maximum permitted GS at touchdown 5 kts.
4. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.
5. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
6. PARK BRAKE — As required.

SHORT FIELD PROCEDURE RTO

1. Collective — Rotate nose down to a maximum of -20° to obtain forward speed and commence the descent to the field. Adjust collective to maintain the rotor droop within 90%NR
2. Cyclic — At 50ft AGL (or approximately 20ft if TDP £ less than 50ft AGL) rotate nose up as necessary (maximum 20°) to decelerate.
3. Touchdown — Continue deceleration to running touchdown or hover. Use collective to cushion touchdown. Maximum nose up attitude on touchdown 15°
4. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.
5. Braking — Apply wheel brakes, as required.
7. PARK BRAKE — As required.
BACK UP PROCEDURE RTO

1. Collective — Lower collective gently to stop climb and establish descent. Maintain rotor speed close to 100% NR.
2. Cyclic — Adjust pitch attitude to -10° nose down to start descent back to the Take-Off position on heliport/helideck.
3. Touchdown — At approximately 5-10ft ATS increase collective to cushion landing as touchdown becomes imminent. Maximum permitted GS at touchdown 5kts.
4. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.
5. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
6. PARK BRAKE — As required.

CLEAR AREA PROCEDURE RTO

1. Collective — Adjust collective to maintain the rotor droop within 90% NR or lower collective slightly, if required, to establish descent.
2. Cyclic — Adjust pitch attitude as required to reduce speed below 30 kts GS.
3. Touchdown — At approximately 5-10ft AGL level aircraft and increase collective to cushion landing as touchdown becomes imminent. Maximum nose up attitude at touchdown 15°.
4. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG. Apply wheel brakes, as required.
5. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
6. PARK BRAKE — As required.

CONFINED AREA PROCEDURE RTO

1. Initial action — Initially maintain collective position while applying 2-3 degrees nose down attitude change to commence movement to helipad.
2. Descent — As aircraft descends, adjust collective to droop NR to 100% ± 1% NR. Maintain the helipad position in chin window.
 • When left hand pilot flying, right hand pilot call out rotor speed.
3. Touchdown — At approximately 15 ft ATS increase collective to cushion landing as touchdown becomes imminent. Maximum nose up attitude at touchdown, 15 degrees. Maximum allowed GS at touchdown 5kts.
4. Landing — After touchdown, lower nose and centralize cyclic and simultaneously reduce collective to MPOG.
5. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
6. PARK BRAKE — As required.
AW139-QRH

OFFSHORE HELIDECK PROCEDURE RTO

1. Collective/Cyclic — Decrease collective to arrest climb and adjusts pitch attitude by 2° to 3° nose down to commence vertical movement toward helideck. Maintain the rotor speed close to 100%NR.

2. Touchdown — At approximately 5-10ft ATS increase collective to cushion landing as touchdown becomes imminent. Maximum permitted GS at touchdown 5 kts.

3. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.

4. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

5. PARK BRAKE — As required.

SINGLE ENGINE FAILURE, RECOGNIZED AT/AFTER TDP

(CONTINUED TAKE-OFF)

VERTICAL, SHORT FIELD AND BACK UP PROCEDURES CTO

1. Collective/Cyclic control — Rotate nose down to -10° in 1 second. Maintain for 1 second. Then recover pitch attitude to 0° in 1 second. Maintain 0° while using collective to droop NR to minimum of 90% and to set 2.5min power.

2. Acceleration/climb — Maintain pitch attitude at 0° and continue the acceleration up to VTOSS (40KIAS).

3. Climb — When the aircraft achieves VTOSS (40KIAS) and a positive rate of climb, adjust pitch attitude to approximately 5° nose up and lower collective to recover NR to 102%. Continue climb to 200ft ATS, with 2.5min power.

4. At 200ft ATS — While climbing accelerate to Vy. Continue climb using OEI continuous power.

5. Landing gear — UP (when reaching Vy)

6. Rotor Speed — Select 100% at Vy

7. At 1000ft ATS — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

8. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.

9. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.
CLEAR AREA CTO
1. Collective/Cyclic — Continue the acceleration using collective to droop NR to minimum of 90% and to set 2.5min power
2. Acceleration/climb — Adjust pitch attitude to 5° nose up and continue acceleration to \(V_{\text{TOS}}\) (50 KIAS).
3. Climb — When the aircraft achieves \(V_{\text{TOS}}\) (50 KIAS) and a positive rate of climb adjust pitch attitude to approximately 10° nose up. Lower collective to recover NR to 102%. Continue climb with 2.5min power to 200ft and level aircraft.
4. At 200ft ATS — While climbing accelerate to \(V_y\). Continue climb using OEI continuous power.
5. Landing gear — UP (when reaching \(V_y\))
6. Rotor Speed — Select 100% at \(V_y\)
7. At 1000ft AGL — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
8. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.

CONFINED AREA CTO
1. Collective/Cyclic — Rotate nose down to -10° in 1 second. Maintain for 1 second. Then recover pitch attitude to 0° in 1 second. Maintain 0° while using collective to droop NR to minimum of 90% and to set 2.5min power.
2. Acceleration/climb — Maintain pitch attitude at 0° and continue the acceleration up to \(V_{\text{TOS}}\) (40 KIAS).
3. Climb — When the aircraft achieves \(V_{\text{TOS}}\) (40 KIAS) and a positive rate of climb, adjust pitch attitude to approximately 5° nose up and lower collective to recover NR to 102%. Continue climb to 200ft or TDP height + 100 ft ATS, with 2.5min power.
4. At 200ft ATS (or TDP height + 100 ft) — While climbing accelerate to \(V_y\). Continue climb using OEI continuous power.
5. Landing gear — UP (when reaching \(V_y\))
6. Rotor Speed — Select 100% at \(V_y\)
7. At 1000ft ATS — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
8. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.
9. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.

CAT A/B PROCS
OFFSHORE HELIPAD CTO

1. Collective control — Maintain collective and continue climb to 30 ft ATS.

2. At 30 ft ATS cyclic/collective control — Rotate nose down to -10° in 1 second. Maintain -10° for 1 second, then recover pitch attitude to 0°. Use collective to droop NR to minimum of 90% and to set 2.5 min power.

3. Acceleration/climb — Maintain pitch attitude at 0° and continue the acceleration up to VTOSS (40 KIAS).

4. Climb — When the aircraft achieves VTOSS (40 KIAS), adjust pitch attitude to approximately 5° nose up and lower collective to recover NR to 102%. Continue climb to 200 ft ATS, with 2.5 min power.

5. At 200 ft ATS — While climbing accelerate to Vy. Continue climb using OEI continuous power.

6. Rotor Speed — Select 100% at Vy

7. Landing gear — UP (when reaching Vy)

8. At 1000 ft ATS, or before, if cruise altitude lower — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

9. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.

10. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.

CAUTION

Following an engine failure after TDP an OEI Landing, using the Offshore Helideck Landing Procedure, is not possible. If a helideck landing is required the Elevated Heliport/ Helideck Landing Procedure and WAT weight (maximum 6400 kg) should be used.

SINGLE ENGINE FAILURE DURING CRUISE

1. Collective — Adjust as necessary to maintain rotor RPM and torque within limits.

2. Cyclic — Establish Safe OEI flight.

3. Collective — Re-adjust collective to minimize altitude loss by applying up to maximum OEI power.

4. Engine restart — Consider engine re-start if cause of initial failure has been determined and corrected. See ENGINE RESTART IN FLIGHT procedure page 63

5. Engine — If engine restart fails or no attempt to restart is made carry out the ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.
CATEGORY A SINGLE ENGINE FAILURE DURING APPROACH AND LANDING:
DURING LANDING PRIOR TO LDP (BALKED LANDING)

HELIPORT BALKED LANDING

1. Engine failure prior to LDP — Apply collective to control NR droop to a minimum of 90% and adjust pitch attitude to 5° nose up to initiate an acceleration to VBLSS (40KIAS).

2. Climb — When the aircraft achieves VBLSS (40KIAS) and a positive rate of climb, lower collective to recover NR to 102%. Continue climb to 200ft or LDPV height+150ft ALS with 2.5min power.

3. At 200ft ALS — Reduce pitch attitude to 2° nose up and accelerate aircraft to Vy while climbing. Lower collective to obtain OEI continuous power.

4. Landing gear — UP (when reaching Vy)
5. Rotor speed — Select 100% at Vy
6. At 1000ft ALS — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

7. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.
8. LDG LT & LDG LT2— OFF, if used.

9. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.

CLEAR AREA BALKED LANDING

1. Engine failure prior to LDP — Apply collective to control NR droop to a minimum of 90% and adjust pitch attitude to 5° nose up to initiate an acceleration to VBLSS (50KIAS).

2. Climb — When the aircraft achieves VBLSS (50KIAS) and a positive rate of climb, lower collective to recover NR to 102%. Continue climb to 200ft AGL with 2.5min power.

3. At 200ft AGL — Reduce pitch attitude to 2° nose up and accelerate aircraft to Vy while climbing. Lower collective to obtain OEI continuous power.

4. Landing gear — UP (when reaching Vy)
5. Rotor speed — Select 100% at Vy
6. At 1000ft AGL — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

7. LDG LT & LDG LT2— OFF, if used.

8. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.
CONFINED AREA BALKED LANDING

1. Engine failure — Apply collective to control NR droop to a minimum of 90% and adjust pitch attitude to 0° to initiate an acceleration to V_{BLSS} (40 KIAS).

2. Climb — When the aircraft achieves V_{BLSS} (40KIAS) and a positive rate of climb, select 5° nose up attitude and progressively lower collective to recover NR to 102%. Continue climb to 200 ft or LDP height + 100 ft ALS with 2.5min power.

3. At 200 ft ALS (or LDP height + 100 ft) — Continue to accelerate aircraft to Vy while climbing. Lower collective to obtain OEI continuous power.

4. Landing gear — UP (when reaching Vy)

5. Rotor speed — Select 100% at Vy

6. At 1000 ft ALS — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

7. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.

8. LDG LT & LDG LT2 — OFF, if used.

9. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.

OFFSHORE HELIDECK BALKED LANDING

1. Engine failure — Simultaneously adjust pitch attitude, nose down to 0° to initiate an acceleration to V_{BLSS} (40KIAS) and apply collective to control NR droop, to a minimum of 90%.

2. Climb — When the aircraft achieves V_{BLSS} (40KIAS) select 5° nose up attitude and progressively lower collective to recover NR to 102% and OEI continuous power. Continue climb and acceleration to Vy.

3. Landing gear — UP (when reaching Vy)

4. Rotor speed — Select 100% at Vy

5. At 1000ft ALS — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

6. PARK BRAKE — Release. Confirm PARK BRAKE ON advisory not illuminated on CAS.

7. LDG LT & LDG LT2 — OFF, if used.

8. MFD — During OEI cruise every 30 minutes select PWR PLANT page to verify engine normal operation.

CAUTION

Following an engine failure before LDP an OEI Landing, using the Offshore Helideck Landing Procedure, is not possible. If a helideck landing is required the Elevated Heliport/Helideck Landing Procedure and WAT weight (maximum 6400 kg) should be used.

CAT A/B PROCS
SINGLE ENGINE FAILURE RECOGNIZED AT AFTER LDP (OEI LANDING)

HELIPORT OEI LANDING
1. Collective/cyclic — Continue the descent. At 50ft ALS increase pitch attitude to reduce speed. Apply collective to reduce rate of descent.

2. Touchdown — At 20ft ALS apply collective to cushion touchdown. Minimum rotor speed 90% NR. Maximum nose up attitude on touchdown 15°. Maximum allowed GS at touchdown 5kts.

3. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.

4. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

5. PARK BRAKE — As required.

6. LDG LT & LDG LT2 — OFF, if used.

CLEAR AREA OEI LANDING
1. Collective/cyclic — Continue to landing point applying collective to control the rotor droop to a minimum or 90%NR and controlling the aircraft pitch attitude to decelerate the helicopter.

2. Touchdown — At 20ft AGL apply collective to cushion the touchdown. At touchdown maximum nose up attitude 15° and maximum GS 30kts.

3. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG. Apply wheel brakes as required.

4. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

5. PARK BRAKE — As required.

6. LDG LT & LDG LT2 — OFF, if used.

CONFINED AREA OEI LANDING
1. Collective/cyclic — Continue the descent at 400 to 500 fpm. Use up to 2.5 Min power and maintain NR at 100 % ± 1 %.

2. Touchdown — At 15 ft ALS apply collective to cushion touchdown. Minimum rotor speed 90% NR. Maximum nose up attitude on touchdown 15°. Maximum allowed GS at touchdown 5kts.

3. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.

4. Engine — On affected engine, carry out ENGINE SHUTDOWN IN AN EMERGENCY procedure page 20.

5. PARK BRAKE — As required.

6. LDG LT & LDG LT2 — OFF, if used.
OFFSHORE HELIDECK OEI LANDING

1. Collective/cyclic — Fly the aircraft forwards, sideways and downwards towards the landing point, decreasing collective slightly. When descending through 30ft ALS reduce nose up attitude to maximum of 10°. At approximately 15ft ALS apply collective using 2.5min power, if required, to cushion touchdown and touchdown with 30° to 45° heading offset. Minimum rotor speed 90% NR. Maximum nose up attitude on touchdown 15°. Maximum allowed GS at touchdown 5kts.

2. Landing — After touchdown, centralize cyclic and simultaneously reduce collective to MPOG.

3. Engine — On affected engine, carry out ENGINE SHUT-DOWN IN AN EMERGENCY procedure page 20.

4. PARK BRAKE — As required.

5. LDG LT & LDG LT2 — OFF, if used.

switches